toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Byström, A.; Clayton, H.M.; Hernlund, E.; Rhodin, M.; Egenvall, A. url  doi
openurl 
  Title Equestrian and biomechanical perspectives on laterality in the horse Type Journal Article
  Year 2020 Publication Comparative Exercise Physiology Abbreviated Journal Comp. Exerc. Physiol.  
  Volume 16 Issue 1 Pages 35-45  
  Keywords  
  Abstract It has been suggested that one of the underlying causes of asymmetrical performance and left/right bias in sound riding horses is laterality originating in the cerebral cortices described in many species. The aim of this paper is to review the published evidence for inherent biomechanical laterality in horses deemed to be clinically sound and relate these findings to descriptions of sidedness in equestrian texts. There are no established criteria to determine if a horse is left or right dominant but the preferred limb has been defined as the forelimb that is more frequently protracted during stance and when grazing. Findings on left-right differences in forelimb hoof shape and front hoof angles have been linked to asymmetric forelimb ground reaction forces. Asymmetries interpreted as motor laterality have been found among foals and unhandled youngsters, and the consistency or extent of asymmetries seems to increase with age. Expressions of laterality also vary with breed, sex, training and handling, stress, and body shape but there are no studies of the possible link between laterality and lameness. In a recent study of a group of seven dressage horses, a movement pattern in many ways similar to descriptions of sidedness in the equestrian literature, e.g. one hind limb being more protracted and placed more laterally than the other, has been documented. The role of innate laterality versus painful conditions, training, human handedness and simply habit remains to be determined. Understanding the biomechanical manifestations of laterality in healthy horses, including individual variation, would yield a potential basis for how laterality should be taken into account in relation to training/riding and rehabilitation of lameness.  
  Address  
  Corporate Author Thesis  
  Publisher Wageningen Academic Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-2540 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.3920/CEP190022 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6663  
Permanent link to this record
 

 
Author Gomez Alvarez, C.B.; Rhodin, M.; Bobber, M.F.; Meyer, H.; Weishaupt, M.A.; Johnston, C.; Van Weeren, P.R. openurl 
  Title The effect of head and neck position on the thoracolumbar kinematics in the unridden horse Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 445-451  
  Keywords Animals; Biomechanics; Head/*physiology; Horses/*physiology; Lumbar Vertebrae/physiology; Male; Neck/*physiology; Physical Conditioning, Animal/physiology; Posture/*physiology; Sports; Thoracic Vertebrae/physiology; Weight-Bearing  
  Abstract REASONS FOR PERFORMING STUDY: In many equestrian activities a specific position of head and/or neck is required that is dissimilar to the natural position. There is controversy about the effects of these positions on locomotion pattern, but few quantitative data are available. OBJECTIVES: To quantify the effects of 5 different head and neck positions on thoracolumbar kinematics of the horse. METHODS: Kinematics of 7 high level dressage horses were measured walking and trotting on an instrumented treadmill with the head and neck in the following positions: HNP2 = neck raised, bridge of the nose in front of the vertical; HNP3 = as HNP2 with bridge of the nose behind the vertical; HNP4 = head and neck lowered, nose behind the vertical; HNP5 = head and neck in extreme high position; HNP6 = head and neck forward and downward. HNP1 was a speed-matched control (head and neck unrestrained). RESULTS: The head and neck positions affected only the flexion-extension motion. The positions in which the neck was extended (HNP2, 3, 5) increased extension in the anterior thoracic region, but increased flexion in the posterior thoracic and lumbar region. For HNP4 the pattern was the opposite. Positions 2, 3 and 5 reduced the flexion-extension range of motion (ROM) while HNP4 increased it. HNP5 was the only position that negatively affected intravertebral pattern symmetry and reduced hindlimb protraction. The stride length was significantly reduced at walk in positions 2, 3, 4 and 5. CONCLUSIONS: There is a significant influence of head/neck position on back kinematics. Elevated head and neck induce extension in the thoracic region and flexion in the lumbar region; besides reducing the sagittal range of motion. Lowered head and neck produces the opposite. A very high position of the head and neck seems to disturb normal kinematics. POTENTIAL RELEVANCE: This study provides quantitative data on the effect of head/neck positions on thoracolumbar motion and may help in discussions on the ethical acceptability of some training methods.  
  Address Department of Equine Sciences, Utrecht University, Yalelaan 12, 3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402464 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3702  
Permanent link to this record
 

 
Author Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S. openurl 
  Title The influence of head and neck position on kinematics of the back in riding horses at the walk and trot Type Journal Article
  Year 2005 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 37 Issue 1 Pages 7-11  
  Keywords Acceleration; Animals; Back/*physiology; Biomechanics; Exercise Test/veterinary; Female; Gait/*physiology; Head/*physiology; Horses/*physiology; Male; Movement/physiology; Neck/*physiology; Walking/physiology  
  Abstract REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.  
  Address Department of Anatomy, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15651727 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3657  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print