toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peham, C.; Licka, T.; Schobesberger, H.; Meschan, E. url  openurl
  Title Influence of the rider on the variability of the equine gait Type Journal Article
  Year (up) 2004 Publication Human Movement Science Abbreviated Journal European Workshop on Movement Science  
  Volume 23 Issue 5 Pages 663-671  
  Keywords  
  Abstract The aim of this study was to show that the motion pattern of a well-ridden horse varies less than the motion pattern of an unridden horse. In order to do so, we recorded the motion of two markers, one attached to the dorsal spinous processus of lumbar vertebra L4, the other to the right fore hoof. In total, we measured 21 horses in trot, ridden and unridden, with a fitting and with a non-fitting saddle. After breaking down the entire time series of the three-dimensional motion of the markers into their respective motion cycles, we computed a measure of motion pattern variability for the motion as well as for the derivatives (velocity and acceleration) along each of the three principal dimensions. Two of six variables (velocity and acceleration in the forward direction) displayed a significant discrimination between the ridden and the unridden case, and demonstrated the beneficial effect of a rider on the horse's motion pattern variability. Saddle fit was shown to have also an influence on motion variability: variability of two variables (velocity and of acceleration in forward direction) was significantly lower with a fitting saddle compared to a non-fitting saddle, a third variable (acceleration in the transversal direction) showed a significant difference also. This new method offers an objective evaluation of saddle fit, and a sensitive assessment of the quality of the rider in the moving horse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3670  
Permanent link to this record
 

 
Author Licka, T.; Kapaun, M.; Peham, C. openurl 
  Title Influence of rider on lameness in trotting horses Type Journal Article
  Year (up) 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 734-736  
  Keywords Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656506 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3715  
Permanent link to this record
 

 
Author Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H. openurl 
  Title Evaluation of pressure distribution under an English saddle at walk, trot and canter Type Journal Article
  Year (up) 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 754-757  
  Keywords Animals; Back/*physiology; Biomechanics; Body Weight/physiology; Exercise Test/veterinary; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Pressure  
  Abstract REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656510 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4041  
Permanent link to this record
 

 
Author Lagarde, J.; Kelso, J.A.S.; Peham, C.; Licka, T. openurl 
  Title Coordination dynamics of the horse-rider system Type Journal Article
  Year (up) 2005 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav  
  Volume 37 Issue 6 Pages 418-424  
  Keywords Animals; Biomechanics; *Horses; Humans; Professional Competence; Psychomotor Performance/*physiology; *Sports; Time Factors  
  Abstract The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice's movements displayed transient departures from phase synchrony, the expert's motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them.  
  Address Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431-771, USA. lagarde@ccs.fau.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2895 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16280312 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4034  
Permanent link to this record
 

 
Author Winkelmayr, B.; Peham, C.; Fruhwirth, B.; Licka, T.; Scheidl, M. openurl 
  Title Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter Type Journal Article
  Year (up) 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 406-410  
  Keywords Animals; Back/*physiology; Back Pain/etiology/veterinary; Biomechanics; Exercise Test/veterinary; Female; Gait/physiology; Horse Diseases/etiology; Horses/*physiology; Humans; Locomotion/physiology; Male; Movement/*physiology; *Physical Conditioning, Animal/instrumentation/methods/physiology; *Pressure; Weight-Bearing/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.  
  Address Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402456 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4007  
Permanent link to this record
 

 
Author Meschan, E.M.; Peham, C.; Schobesberger, H.; Licka, T.F. url  doi
openurl 
  Title The influence of the width of the saddle tree on the forces and the pressure distribution under the saddle Type Journal Article
  Year (up) 2007 Publication The Veterinary Journal Abbreviated Journal  
  Volume 173 Issue 3 Pages 578-584  
  Keywords Saddle fit; Kinematics; Kinetics; Pressure; Saddletree  
  Abstract As there is no statistical evidence that saddle fit influences the load exerted on a horse's back this study was performed to assess the hypothesis that the width of the tree significantly alters the pressure distribution on the back beneath the saddle. Nineteen sound horses were ridden at walk and trot on a treadmill with three saddles differing only in tree width. Kinetic data were recorded by a sensor mat. A minimum of 14 motion cycles were used in each trial. The saddles were classified into four groups depending on fit. For each horse, the saddle with the lowest overall force (LOF) was determined. Saddles were classified as “too-narrow” if they were one size (2 cm) narrower than the LOF saddle, and “too-wide” if they were one size (2 cm) wider than the LOF saddle. Saddles two sizes wider than LOF saddles were classified as “very-wide”. In the group of narrow saddles, the pressure in the caudal third (walk 0.63 N/cm2 +/- 0.10; trot 1.08 N/cm2 +/- 0.26) was significantly higher compared to the LOF saddles (walk 0.50 N/cm2 +/- 0.09; trot 0.86 N/cm2 +/- 0.28). In the middle transversal third, the pressure of the wide saddles (walk 0.73 N/cm2 +/- 0.06; trot 1.52 N/cm2 +/- 0.19) and very-wide saddles (walk 0.77 N/cm2 +/- 0.06; trot 1.57 N/cm2 +/- 0.19) was significantly higher compared to LOF saddles (walk 0.65 N/cm2 +/- 0.10/ 0.63 N/cm2 +/- 0.11; trot 1.33 N/cm2 +/- 0.22/1.27 N/cm2 +/- 0.20). This study demonstrates that the load under poorly fitting saddles is distributed over a smaller area than under properly fitting saddles, leading to potentially harmful pressures peaks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4349  
Permanent link to this record
 

 
Author Groesel, M.; Zsoldos, R.R.; Kotschwar, A.; Gfoehler, M.; Peham, C. url  doi
openurl 
  Title A preliminary model study of the equine back including activity of longissimus dorsi muscle Type Journal Article
  Year (up) 2010 Publication Equine Veterinary Journal Abbreviated Journal  
  Volume 42 Issue Pages 401-406  
  Keywords horse; back movement; biomechanical model; longissimus dorsi; lateral bending  
  Abstract Reasons for performing study: Identifying the underlying problem of equine back pain and diseases of the spine are significant problems in veterinary orthopaedics. A study to validate a preliminary biomechanical model of the equine back based on CT images including longissimus dorsi (LD) muscle is therefore important. Objectives: Validation of the back model by comparing the shortening of LD muscles in the model with integrated EMG (IEMG) at stance during induced lateral flexion of the spine. Methods:Longissimus dorsi muscle activity at stance has been used for validation. EMG electrodes were placed laterally at the level of T12, T16 and L3. Reflective markers have been attached on top of the spinous processes T5, T12, T16, L1 and the sacral bone (OS1, OS2) for motion tracking analysis. A virtual model of the equine's back (T1–S5) was built with inclusion of a simplified LD muscle by 2 separate contours left and right of the spine, starting at tuber coxae laterally and attaching to the spinous process T5 medially. Shortening of LD during induced lateral flexion caused by the kinematic data (input) was compared to the 3 EMG signals (T12, T16 and L3) on the active side via correlation. Results: Pearson correlation coefficient between IEMG and shortening length of LD in the model was (mean ± s.d.) 0.95 ± 0.07 for the left side and 0.91 ± 0.07 for the right side of LD. Conclusions: Activity of the LD muscles is mainly responsible for stabilisation of the vertebral column with isometric muscle contraction against dynamic forces in walk and trot. This validation requires muscle shortening in the back, like induced lateral flexion at stance. The length of the shortening muscle model and the IEMG show a linear relationship. These findings will help to model the LD for forward simulations, e.g. from force to motion.  
  Address  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2042-3306 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5675  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print