|   | 
Details
   web
Records
Author (down) Lin, Y.-L.; Moolenaar, H.; van Weeren, P.R.; van de Lest, C.H.A.
Title Effect of microcurrent electrical tissue stimulation on equine tenocytes in culture Type Journal Article
Year 2006 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 67 Issue 2 Pages 271-276
Keywords Animals; Apoptosis; Cell Proliferation; Cells, Cultured; Electric Stimulation; *Horses; Tendons/*cytology
Abstract OBJECTIVE: To determine effects of microcurrent electrical tissue stimulation (METS) on equine tenocytes cultured from the superficial digital flexor tendon (SDFT). SAMPLE POPULATION: SDFTs were collected from 20 horses at slaughter. PROCEDURE: Tenocytes were isolated following outgrowth from explants and grown in 48-well plates. Four methods of delivering current to the tenocytes with a METS device were tested. Once the optimal method was selected, current consisting of 0 (negative control), 0.05, 0.1, 0.5, 1.0, or 1.5 mA was applied to cells (8 wells/current intensity) once daily for 8 minutes. Cells were treated for 1, 2, or 3 days. Cell proliferation, DNA content, protein content, and apoptosis rate were determined. RESULTS: Application of microcurrent of moderate intensity increased cell proliferation and DNA content, with greater increases with multiple versus single application. Application of microcurrent of moderate intensity once or twice increased protein content, but application 3 times decreased protein content. Application of current a single time did not significantly alter apoptosis rate; however, application twice or 3 times resulted in significant increases in apoptosis rate, and there were significant linear (second order) correlations between current intensity and apoptosis rate when current was applied twice or 3 times. CONCLUSIONS AND CLINICAL RELEVANCE: Results of the present study indicate that microcurrent affects the behavior of equine tenocytes in culture, but that effects may be negative or positive depending on current intensity and number of applications. Therefore, results are far from conclusive with respect to the suitability of using METS to promote tendon healing in horses.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, State University of Utrecht, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:16454632 Approved no
Call Number Serial 1878
Permanent link to this record
 

 
Author (down) Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W.
Title Folding units govern the cytochrome c alkaline transition Type Journal Article
Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 331 Issue 1 Pages 37-43
Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry
Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.
Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:12875834 Approved no
Call Number Equine Behaviour @ team @ Serial 3781
Permanent link to this record