|   | 
Details
   web
Records
Author Heleski, C.R.; McGreevy, P.D.; Kaiser, L.J.; Lavagnino, M.; Tans, E.; Bello, N.; Clayton, H.M.
Title Effects on behaviour and rein tension on horses ridden with or without martingales and rein inserts Type Journal Article
Year (up) 2009 Publication The Veterinary Journal Abbreviated Journal
Volume 181 Issue 1 Pages 56-62
Keywords Horse behaviour; Horse welfare; Equitation science; Rein tension; Martingales
Abstract Unsteady hand position can cause discomfort to the horse, potentially leading to conflict behaviours (CB) such as head tossing or tail lashing. Some instructors feel that martingales or elastic rein inserts can reduce discomfort caused by inexperienced and unsteady hands. Others consider these devices to be inappropriate [`]crutches'. Four horses and nine riders were tested under three conditions in random order: plain reins, adjustable training martingales (TM), and elasticised rein inserts (RI). Rein-tension data (7 s) and behavioural data (30 s) were collected in each direction. Rein-tension data were collected via strain-gauge transducers. Behavioural data were assessed using an ethogram of defined behaviours. No differences in the number of CB were observed. Mean rein tension for TM was higher than that of RI or controls. Relative to the withers, the head was lower for horses ridden with martingales. Carefully fitted martingales may have a place in riding schools that teach novices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4807
Permanent link to this record
 

 
Author Clayton, H.M.; Larson, B.; Kaiser, L.A.J.; Lavagnino, M.
Title Length and elasticity of side reins affect rein tension at trot Type Journal Article
Year (up) 2011 Publication The Veterinary Journal Abbreviated Journal
Volume 188 Issue 3 Pages 291-294
Keywords Horse; Equitation; Training; Rein aids
Abstract This study investigated the horseís contribution to tension in the reins. The experimental hypotheses were that tension in side reins (1) increases biphasically in each trot stride, (2) changes inversely with rein length, and (3) changes with elasticity of the reins. Eight riding horses trotted in hand at consistent speed in a straight line wearing a bit and bridle and three types of side reins (inelastic, stiff elastic, compliant elastic) were evaluated in random order at long, neutral, and short lengths. Strain gauge transducers (240 Hz) measured minimal, maximal and mean rein tension, rate of loading and impulse. The effects of rein type and length were evaluated using ANOVA with Bonferroni post hoc tests. Rein tension oscillated in a regular pattern with a peak during each diagonal stance phase. Within each rein type, minimal, maximal and mean tensions were higher with shorter reins. At neutral or short lengths, minimal tension increased and maximal tension decreased with elasticity of the reins. Short, inelastic reins had the highest maximal tension and rate of loading. Since the tension variables respond differently to rein elasticity at different lengths, it is recommended that a set of variables representing different aspects of rein tension should be reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6124
Permanent link to this record
 

 
Author Belock, B.; Kaiser, L.J.; Lavagnino, M.; Clayton, H.M.
Title Comparison of pressure distribution under a conventional saddle and a treeless saddle at sitting trot Type Journal Article
Year (up) 2012 Publication The Veterinary Journal Abbreviated Journal
Volume 193 Issue 1 Pages 87-91
Keywords Horse; Rider; Equitation; Tack; Electronic pressure mat
Abstract It can be a challenge to find a conventional saddle that is a good fit for both horse and rider. An increasing number of riders are purchasing treeless saddles because they are thought to fit a wider range of equine back shapes, but there is only limited research to support this theory. The objective of this study was to compare the total force and pressure distribution patterns on the horseís back with conventional and treeless saddles. The experimental hypotheses were that the conventional saddle would distribute the force over a larger area with lower mean and maximal pressures than the treeless saddle. Eight horses were ridden by a single rider at sitting trot with conventional and treeless saddles. An electronic pressure mat measured total force, area of saddle contact, maximal pressure and area with mean pressure >11 kPa for 10 strides with each saddle. Univariate ANOVA (P < 0.05) was used to detect differences between saddles. Compared with the treeless saddle, the conventional saddle distributed the riderís bodyweight over a larger area, had lower mean and maximal pressures and fewer sensors recording mean pressure >11 kPa. These findings suggested that the saddle tree was effective in distributing the weight of the saddle and rider over a larger area and in avoiding localized areas of force concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5821
Permanent link to this record