toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gaunitz, C.; Fages, A.; Hanghøj, K.; Albrechtsen, A.; Khan, N.; Schubert, M.; Seguin-Orlando, A.; Owens, I.J.; Felkel, S.; Bignon-Lau, O.; de Barros Damgaard, P.; Mittnik, A.; Mohaseb, A.F.; Davoudi, H.; Alquraishi, S.; Alfarhan, A.H.; Al-Rasheid, K.A.S.; Crubézy, E.; Benecke, N.; Olsen, S.; Brown, D.; Anthony, D.; Massy, K.; Pitulko, V.; Kasparov, A.; Brem, G.; Hofreiter, M.; Mukhtarova, G.; Baimukhanov, N.; Lõugas, L.; Onar, V.; Stockhammer, P.W.; Krause, J.; Boldgiv, B.; Undrakhbold, S.; Erdenebaatar, D.; Lepetz, S.; Mashkour, M.; Ludwig, A.; Wallner, B.; Merz, V.; Merz, I.; Zaibert, V.; Willerslev, E.; Librado, P.; Outram, A.K.; Orlando, L. doi  openurl
  Title Ancient genomes revisit the ancestry of domestic and Przewalski's horses Type Journal Article
  Year 2018 Publication Science Abbreviated Journal  
  Volume 360 Issue 6384 Pages 111-114  
  Keywords  
  Abstract The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5,500 ya, but the exact nature of early horse domestication remains controversial. We generated 42 ancient horse genomes, including 20 from Botai. Compared to 46 published ancient and modern horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4,000 ya to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 6212  
Permanent link to this record
 

 
Author Krause, J.; James, R.; Franks, D.W.; Croft, D. P. openurl 
  Title Animal Social Networks. Type Book Whole
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Oxford Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5883  
Permanent link to this record
 

 
Author Guttridge, T.L.; Dijk, S.; Stamhuis, E.J.; Krause, J.; Gruber, S.H.; Brown, C. url  doi
openurl 
  Title Social learning in juvenile lemon sharks, Negaprion brevirostris Type Journal Article
  Year 2013 Publication Abbreviated Journal Animal Cognition  
  Volume 16 Issue 1 Pages 55-64  
  Keywords Local and stimulus enhancement; Group living; Social facilitation; Social information use; Elasmobranchs  
  Abstract Social learning is taxonomically widespread and can provide distinct behavioural advantages, such as in finding food or avoiding predators more efficiently. Although extensively studied in bony fishes, no such empirical evidence exists for cartilaginous fishes. Our aim in this study was to experimentally investigate the social learning capabilities of juvenile lemon sharks, Negaprion brevirostris. We designed a novel food task, where sharks were required to enter a start zone and subsequently make physical contact with a target in order to receive a food reward. Naive sharks were then able to interact with and observe (a) pre-trained sharks, that is, ‘demonstrators’, or (b) sharks with no previous experience, that is, ‘sham demonstrators’. On completion, observer sharks were then isolated and tested individually in a similar task. During the exposure phase observers paired with ‘demonstrator’ sharks performed a greater number of task-related behaviours and made significantly more transitions from the start zone to the target, than observers paired with ‘sham demonstrators’. When tested in isolation, observers previously paired with ‘demonstrator’ sharks completed a greater number of trials and made contact with the target significantly more often than observers previously paired with ‘sham demonstrators’. Such experience also tended to result in faster overall task performance. These results indicate that juvenile lemon sharks, like numerous other animals, are capable of using socially derived information to learn about novel features in their environment. The results likely have important implications for behavioural processes, ecotourism and fisheries.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5697  
Permanent link to this record
 

 
Author Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. url  doi
openurl 
  Title Collective Memory and Spatial Sorting in Animal Groups Type Journal Article
  Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 218 Issue 1 Pages 1-11  
  Keywords  
  Abstract We present a self-organizing model of group formation in three-dimensional space, and use it to investigate the spatial dynamics of animal groups such as fish schools and bird flocks. We reveal the existence of major group-level behavioural transitions related to minor changes in individual-level interactions. Further, we present the first evidence for collective memory in such animal groups (where the previous history of group structure influences the collective behaviour exhibited as individual interactions change) during the transition of a group from one type of collective behaviour to another. The model is then used to show how differences among individuals influence group structure, and how individuals employing simple, local rules of thumb, can accurately change their spatial position within a group (e.g. to move to the centre, the front, or the periphery) in the absence of information on their current position within the group as a whole. These results are considered in the context of the evolution and ecological importance of animal groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5310  
Permanent link to this record
 

 
Author Ward, A.J.W.; Sumpter, D.J.T.; Couzin, I.D.; Hart, P.J.B.; Krause, J. url  doi
openurl 
  Title Quorum decision-making facilitates information transfer in fish shoals Type Journal Article
  Year 2008 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 105 Issue 19 Pages 6948-6953  
  Keywords  
  Abstract Despite the growing interest in collective phenomena such as “swarm intelligence” and “wisdom of the crowds,” little is known about the mechanisms underlying decision-making in vertebrate animal groups. How do animals use the behavior of others to make more accurate decisions, especially when it is not possible to identify which individuals possess pertinent information? One plausible answer is that individuals respond only when they see a threshold number of individuals perform a particular behavior. Here, we investigate the role of such “quorum responses” in the movement decisions of fish (three-spine stickleback, Gasterosteus aculeatus). We show that a quorum response to conspecifics can explain how sticklebacks make collective movement decisions, both in the absence and presence of a potential predation risk. Importantly our experimental work shows that a quorum response can reduce the likelihood of amplification of nonadaptive following behavior. Whereas the traveling direction of solitary fish was strongly influenced by a single replica conspecific, the replica was largely ignored by larger groups of four or eight sticklebacks under risk, and the addition of a second replica was required to exert influence on the movement decisions of such groups. Model simulations further predict that quorum responses by fish improve the accuracy and speed of their decision-making over that of independent decision-makers or those using a weak linear response. This study shows that effective and accurate information transfer in groups may be gained only through nonlinear responses of group members to each other, thus highlighting the importance of quorum decision-making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 10.1073/pnas.0710344105 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5252  
Permanent link to this record
 

 
Author Krause, J.; Lusseau, D.; James, R. doi  openurl
  Title Animal social networks: an introduction Type Journal Article
  Year 2009 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 63 Issue 7 Pages 967-973-973  
  Keywords Biomedical and Life Sciences  
  Abstract Network analysis has a long history in the mathematical and social sciences and the aim of this introduction is to provide a brief overview of the potential that it holds for the study of animal behaviour. One of the most attractive features of the network paradigm is that it provides a single conceptual framework with which we can study the social organisation of animals at all levels (individual, dyad, group, population) and for all types of interaction (aggressive, cooperative, sexual etc.). Graphical tools allow a visual inspection of networks which often helps inspire ideas for testable hypotheses. Network analysis itself provides a multitude of novel statistical tools that can be used to characterise social patterns in animal populations. Among the important insights that networks have facilitated is that indirect social connections matter. Interactions between individuals generate a social environment at the population level which in turn selects for behavioural strategies at the individual level. A social network is often a perfect means by which to represent heterogeneous relationships in a population. Probing the biological drivers for these heterogeneities, often as a function of time, forms the basis of many of the current uses of network analysis in the behavioural sciences. This special issue on social networks brings together a diverse group of practitioners whose study systems range from social insects over reptiles to birds, cetaceans, ungulates and primates in order to illustrate the wide-ranging applications of network analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-5443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5209  
Permanent link to this record
 

 
Author Krause, S.; Mattner, L.; James, R.; Guttridge, T.; Corcoran, M.; Gruber, S.; Krause, J. doi  openurl
  Title Social network analysis and valid Markov chain Monte Carlo tests of null models Type Journal Article
  Year 2009 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 63 Issue 7 Pages 1089-1096-1096  
  Keywords Biomedical and Life Sciences  
  Abstract Analyses of animal social networks derived from group-based associations often rely on randomisation methods developed in ecology (Manly, Ecology 76:1109–1115, 1995) and made available to the animal behaviour community through implementation of a pair-wise swapping algorithm by Bejder et al. (Anim Behav 56:719–725, 1998). We report a correctable flaw in this method and point the reader to a wider literature on the subject of null models in the ecology literature. We illustrate the importance of correcting the method using a toy network and use it to make a preliminary analysis of a network of associations among eagle rays.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-5443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5208  
Permanent link to this record
 

 
Author James, R.; Croft, D.; Krause, J. doi  openurl
  Title Potential banana skins in animal social network analysis Type Journal Article
  Year 2009 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 63 Issue 7 Pages 989-997-997  
  Keywords Biomedical and Life Sciences  
  Abstract Social network analysis is an increasingly popular tool for the study of the fine-scale and global social structure of animals. It has attracted particular attention by those attempting to unravel social structure in fission–fusion populations. It is clear that the social network approach offers some exciting opportunities for gaining new insights into social systems. However, some of the practices which are currently being used in the animal social networks literature are at worst questionable and at best over-enthusiastic. We highlight some of the areas of method, analysis and interpretation in which greater care may be needed in order to ensure that the biology we extract from our networks is robust. In particular, we suggest that more attention should be given to whether relational data are representative, the potential effect of observational errors and the choice and use of statistical tests. The importance of replication and manipulation must not be forgotten, and the interpretation of results requires care.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-5443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5206  
Permanent link to this record
 

 
Author Faria, J.J.; Dyer, J.R.G.; Tosh, C.R.; Krause, J. url  doi
openurl 
  Title Leadership and social information use in human crowds Type Journal Article
  Year 2010 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 79 Issue 4 Pages 895-901  
  Keywords collective animal behaviour; group; human; inadvertent social cue; information; leadership  
  Abstract One of the big challenges for group-living animals is to find out who in a group has pertinent information (regarding food or predators) at any moment in time, because informed individuals may not be obviously recognizable to other group members. We found that individuals in human groups were capable of identifying those with information, and this identification increased group performance: the speed and accuracy of groups in reaching a target. Using video analysis we found how informed individuals might have been identified by other group members by means of inadvertent social cues (such as starting order, time spent following and group position). Furthermore, we were able to show that at least one of these cues, the group position of informed individuals, was indeed correlated with group performance. Our final experiment confirmed that leadership was even more efficient when the group members were given the identity of the leader. We discuss the effect of information status regarding the presence and identity of leaders on collective animal behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5192  
Permanent link to this record
 

 
Author Bode, N.W.F.; Faria, J.J.; Franks, D.W.; Krause, J.; Wood, A.J. url  doi
openurl 
  Title How perceived threat increases synchronization in collectively moving animal groups Type Journal Article
  Year 2010 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. Roy. Soc. Lond. B Biol. Sci.  
  Volume 277 Issue 1697 Pages 3065-3070  
  Keywords  
  Abstract Nature is rich with many different examples of the cohesive motion of animals. Previous attempts to model collective motion have primarily focused on group behaviours of identical individuals. In contrast, we put our emphasis on modelling the contributions of different individual-level characteristics within such groups by using stochastic asynchronous updating of individual positions and orientations. Our model predicts that higher updating frequency, which we relate to perceived threat, leads to more synchronized group movement, with speed and nearest-neighbour distributions becoming more uniform. Experiments with three-spined sticklebacks (Gasterosteus aculeatus) that were exposed to different threat levels provide strong empirical support for our predictions. Our results suggest that the behaviour of fish (at different states of agitation) can be explained by a single parameter in our model: the updating frequency. We postulate a mechanism for collective behavioural changes in different environment-induced contexts, and explain our findings with reference to confusion and oddity effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 10.1098/rspb.2010.0855 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print