toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author da Costa, A.P.; Leigh, A.E.; Man, M.-S.; Kendrick, K.M. url  doi
openurl 
  Title Face pictures reduce behavioural, autonomic, endocrine and neural indices of stress and fear in sheep Type Journal Article
  Year 2004 Publication Proceedings of the Royal Society of London. Series B: Biological Sciences Abbreviated Journal Proc. R. Soc. Lond. B.  
  Volume 271 Issue 1552 Pages 2077-2084  
  Keywords  
  Abstract Faces are highly emotive stimuli and we find smiling or familiar faces both attractive and comforting, even as young babies. Do other species with sophisticated face recognition skills, such as sheep, also respond to the emotional significance of familiar faces? We report that when sheep experience social isolation, the sight of familiar sheep face pictures compared with those of goats or inverted triangles significantly reduces behavioural (activity and protest vocalizations), autonomic (heart rate) and endocrine (cortisol and adrenaline) indices of stress. They also increase mRNA expression of activity–dependent genes (c–fos and zif/268) in brain regions specialized for processing faces (temporal and medial frontal cortices and basolateral amygdala) and for emotional control (orbitofrontal and cingulate cortex), and reduce their expression in regions associated with stress responses (hypothalamic paraventricular nucleus) and fear (central and lateral amygdala). Effects on face recognition, emotional control and fear centres are restricted to the right brain hemisphere. Results provide evidence that face pictures may be useful for relieving stress caused by unavoidable social isolation in sheep, and possibly other animal species, including humans. The finding that sheep, like humans, appear to have a right brain hemisphere involvement in the control of negative emotional experiences also suggests that functional lateralization of brain emotion systems may be a general feature in mammals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5354  
Permanent link to this record
 

 
Author Peirce, J.W.; Leigh, A.E.; Kendrick, K.M. url  doi
openurl 
  Title Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep Type Journal Article
  Year 2000 Publication Neuropsychologia Abbreviated Journal  
  Volume 38 Issue 4 Pages 475-483  
  Keywords Asymmetry; Hemispheric lateralisation; Chimeric; Face processing; Expertise; Internal features  
  Abstract This study examined characteristics of visual recognition of familiar and unfamiliar faces in sheep using a 2-way discrimination task. Of particular interest were effects of lateralisation and the differential use of internal (configurational) vs external features of the stimuli. Animals were trained in a Y-maze to identify target faces from pairs, both of which were familiar (same flock as the subjects) or both of which were unfamiliar (different flock). Having been trained to identify the rewarded face a series of stimuli were presented to the sheep, designed to test for the use of each visual hemifield in the discriminations and the use of internal and external facial cues. The first experiment showed that there was a left visual hemifield (LVF) advantage in the identification of [`]hemifaces', and [`]mirrored hemifaces' and [`]chimeric' faces and that this effect was strongest with familiar faces. This represents the first evidence for visual field bias outside the primate literature. Results from the second experiment showed that, whilst both familiar and unfamiliar faces could be identified by the external features alone, only the familiar faces could be recognised by the internal features alone. Overall the results suggest separate recognition methods for socially familiar and unfamiliar faces, with the former being coded more by internal, configurational cues and showing a lateral bias to the left visual field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-3932 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5343  
Permanent link to this record
 

 
Author Brennan, P.A.; Kendrick, K.M. doi  openurl
  Title Mammalian social odours: attraction and individual recognition Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2061-2078  
  Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal  
  Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4334  
Permanent link to this record
 

 
Author Kendrick, K.M. url  openurl
  Title How the sheep's brain controls the visual recognition of animals and humans Type Journal Article
  Year 1991 Publication Journal of Animal Science Abbreviated Journal J. Anim Sci.  
  Volume 69 Issue 12 Pages 5008-5016  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2940  
Permanent link to this record
 

 
Author Kendrick, K.M. url  doi
openurl 
  Title Intelligent perception Type Journal Article
  Year 1998 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 57 Issue 3-4 Pages 213-231  
  Keywords Intelligent perception; Environmental changes; Primates  
  Abstract For an animal from any species to exhibit intelligent perception it must be capable of being consciously aware of what it perceives and capable of learning from this experience. Although many organisms, and for that matter machines, are capable of rapid adaptive learning in response to perception of environmental changes, such adaptations can occur without them being consciously aware either of external stimuli or their response to them. While behavioural and neurophysiological evidence suggests that, apart from ourselves, other higher primates must also be capable of such awareness, an important central question is whether such awareness is a characteristic of primate evolution or if it also occurs in sub-primate mammals as well. In this review I will examine our behavioural and neurophysiological evidence from visual and olfactory recognition studies in the sheep to support the argument that they are likely to be aware of and learn about both social and non-social objects and that they are therefore capable of intelligent perception. However, the impact of motivational changes on these perceptual processes suggests that they may be limited in terms of both prospection and retrospection and dealing with symbolic associations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 796  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print