|   | 
Details
   web
Records
Author (up) Hada, T.; Ohmura, H.; Mukai, K.; Eto, D.; Takahashi, T.; Hiraga, A.
Title Utilisation of the time constant calculated from heart rate recovery after exercise for evaluation of autonomic activity in horses Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 141-145
Keywords Animals; Atropine/pharmacology; Autonomic Nervous System/drug effects/*physiology; Exercise Test/veterinary; Female; Heart Rate/*physiology; Horses/*physiology; Male; Oxygen Consumption/*physiology; Parasympatholytics/*pharmacology; Physical Conditioning, Animal/*physiology; Physical Fitness/physiology; Propranolol/pharmacology
Abstract REASONS FOR PERFORMING STUDY: Heart rate (HR) recovery immediately after exercise is controlled by autonomic functions and the time constant (T) calculated from HR recovery is thought to be an index of parasympathetic activity in man. OBJECTIVES: To investigate whether it is possible to evaluate autonomic function using the time constant in horses. METHODS: Five Thoroughbred horses were subjected to a standard exercise test. Following pre-medication with saline, atropine and/or propranolol, the horses ran for 2.5 min at a speed of 8 m/sec at a 10% incline and T was calculated from HR after the exercise. Secondly, 7 Thoroughbred horses were then trained for 11 weeks and T and maximal oxygen uptake (VO2max) measured at intervals of 1 or 2 weeks. In 6 horses, T with atropine pre-medication was also measured before and after the whole training period. Furthermore, the HR variability at rest was evaluated by power spectral analysis at intervals of 3 or 4 weeks. RESULTS: Time constant was increased by atropine and/or propranolol pre-medication, decreased with the progress of training and inversely correlated with VO2max during training (r = 0.43, P<0.005). Parasympathetic blockade significantly decreased T only after and not before, the training; however, T was lower in post training than in pretraining, irrespective of parasympathetic blockade. On the other hand, parasympathetic activity at rest was attenuated and sympathetic activity became predominant following the training. CONCLUSION: Heart rate recovery is affected by sympathetic withdrawal and parasympathetic reactivation in horses and suggests that physical training hastened HR recovery by improving the parasympathetic function after exercise with aerobic capacity. However, the effects of other factors need to be considered because the training effect appeared on T even under parasympathetic blockade. The parasympathetic activity at rest is in contrast to that after exercise, suggesting that T does not reflect parasympathetic activity at rest. POTENTIAL RELEVANCE: If demonstrated how HR recovery is controlled after exercise, its analysis will be important in the evaluation of physical fitness in horses.
Address Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 535-13 Nischicha, Urakawa-cho, Uraakawagun, Hokkaido, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402409 Approved no
Call Number Equine Behaviour @ team @ Serial 4010
Permanent link to this record
 

 
Author (up) Takahashi, T.; Kasashima, Y.; Eto, D.; Mukai, K.; Hiraga, A.
Title Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 435-439
Keywords Animals; Biomechanics; Exercise Test/veterinary; Female; Forelimb/physiology; Hoof and Claw/physiology; Horses/*physiology; Male; Physical Conditioning, Animal/*methods/*physiology; Tarsal Joints/*physiology; Tarsus, Animal; Tendon Injuries/etiology/prevention & control/veterinary; Time Factors
Abstract REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.
Address Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402462 Approved no
Call Number Equine Behaviour @ team @ Serial 4005
Permanent link to this record