|   | 
Details
   web
Records
Author Milinovich, G.J.; Trott, D.J.; Burrell, P.C.; van Eps, A.W.; Thoefner, M.B.; Blackall, L.L.; Al Jassim, R.A.M.; Morton, J.M.; Pollitt, C.C.
Title Changes in equine hindgut bacterial populations during oligofructose-induced laminitis Type Journal Article
Year 2006 Publication Environmental Microbiology Abbreviated Journal Environ Microbiol
Volume 8 Issue 5 Pages 885-898
Keywords Animal Feed; Animals; Bacteria/classification/*isolation & purification; DNA, Bacterial/analysis; Disease Models, Animal; Feces/microbiology; Foot Diseases/etiology/microbiology/*veterinary; Horse Diseases/*etiology/metabolism/microbiology; Horses; In Situ Hybridization, Fluorescence; Intestines/*microbiology; Oligosaccharides/*administration & dosage/*metabolism; Phylogeny; Polymerase Chain Reaction; RNA, Bacterial/analysis; RNA, Ribosomal, 16S/analysis
Abstract In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.
Address Australian Equine Laminitis Research Unit, School of Veterinary Science, The University of Queensland, Queensland, Australia. g.milinovich@uq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-2912 ISBN Medium
Area Expedition Conference
Notes PMID:16623745 Approved no
Call Number Equine Behaviour @ team @ Serial 2625
Permanent link to this record
 

 
Author Hunt, G.R.; Rutledge, R.B.; Gray, R.D.
Title The right tool for the job: what strategies do wild New Caledonian crows use? Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 307-316
Keywords Analysis of Variance; Animals; Comprehension; *Crows; Female; *Intelligence; Male; *Problem Solving; *Tool Use Behavior
Abstract New Caledonian crows Corvus moneduloides (NC crows) display sophisticated tool manufacture in the wild, but the cognitive strategy underlying these skills is poorly understood. Here, we investigate what strategy two free-living NC crows used in response to a tool-length task. The crows manufactured tools to extract food from vertical holes of different depths. The first tools they made in visits were of a similar length regardless of the hole depth. The typical length was usually too short to extract food from the deep holes, which ruled out a strategy of immediate causal inference on the first attempt in a trial. When the first tool failed, the crows made second tools significantly longer than the unsuccessful first tools. There was no evidence that the crows made the lengths of first tools to directly match hole depth. We argue that NC crows may generally use a two-stage heuristic strategy to solve tool problems and that performance on the first attempt in a trial is not necessarily the 'gold standard' for assessing folk physics.
Address Department of Psychology, University of Auckland, Private Bag 92019, Auckland, New Zealand. grhunt10@hotmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941156 Approved no
Call Number Equine Behaviour @ team @ Serial 2442
Permanent link to this record
 

 
Author Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G.
Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 281-293
Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology
Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941155 Approved no
Call Number Equine Behaviour @ team @ Serial 2443
Permanent link to this record
 

 
Author Clara, E.; Regolin, L.; Vallortigara, G.; Rogers, L.
Title Perception of the stereokinetic illusion by the common marmoset (Callithrix jacchus) Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 135-140
Keywords Animals; Behavior, Animal/*physiology; Callithrix/*physiology; Female; Male; *Optical Illusions; Pattern Recognition, Visual/*physiology
Abstract Stereokinetic illusions have never been investigated in non-human primates, nor in other mammalian species. These illusions consist in the perception of a 3D solid object when certain 2D stimuli are rotated slowly in the plane perpendicular to the line of sight. The ability to perceive the stereokinetic illusion was investigated in the common marmoset (Callithrix jacchus). Four adult marmosets were trained to discriminate between a solid cylinder and a solid cone for food reward. Once learning criterion was reached, the marmosets were tested in sets of eight probe trials in which the two solid objects used at training were replaced by two rotating 2D stimuli. Only one of these stimuli produced, at least to the human observer, the stereokinetic illusion corresponding to the solid object previously reinforced. At test, the general behaviour and the total time spent by the marmosets observing each stimulus were recorded. The subjects stayed longer near the stimulus producing the stereokinetic illusion corresponding to the solid object reinforced at training than they did near the illusion corresponding to the previously non-rewarded stimulus. Hence, the common marmosets behaved as if they could perceive stereokinetic illusions.
Address Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, NSW, 2351, Australia. elena.clara@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16924457 Approved no
Call Number Equine Behaviour @ team @ Serial 2445
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E.
Title The logic of the stimulus Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 247-256
Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity
Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909234 Approved no
Call Number Equine Behaviour @ team @ Serial 2450
Permanent link to this record
 

 
Author Lacreuse, A.; Martin-Malivel, J.; Lange, H.S.; Herndon, J.G.
Title Effects of the menstrual cycle on looking preferences for faces in female rhesus monkeys Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 105-115
Keywords Animals; *Behavior, Animal; Discrimination Learning; Estradiol/blood; *Face; Female; Humans; Macaca mulatta/*physiology; Male; Menstrual Cycle/blood/*physiology; *Pattern Recognition, Visual
Abstract Fluctuations of ovarian hormones across the menstrual cycle influence a variety of social and cognitive behaviors in primates. For example, female rhesus monkeys exhibit heightened interest for males and increased agonistic interactions with other females during periods of high estrogen levels. In the present study, we hypothesized that females' preference for males during periods of high estrogen levels is also expressed at the level of face perception. We tested four intact females on two face-tasks involving neutral portraits of male and female rhesus monkeys, chimpanzees and humans. In the visual preference task (VP), monkeys had to touch a button to view a face image. The image remained on the screen as long as the button was touched, and the duration of pressing was taken as an index of the monkey's looking time for the face stimulus. In the Face-Delayed Recognition Span Test (Face-DRST), monkeys were rewarded for touching the new face in an increasing number of serially presented faces. Monkeys were tested 5 days a week across one menstrual cycle. Blood was collected every other day for analysis of estradiol and progesterone. Two of the four females were cycling at the time of testing. We did not find an influence of the cycle on Face-DRST, likely due to a floor effect. In the VP however, the two cycling individuals looked longer at conspecific male faces than female faces during the peri-ovulatory period of the cycle. Such effects were absent for human and chimpanzee faces and for the two noncycling subjects. These data suggest that ovarian hormones may influence females' preferences for specific faces, with heightened preference for male faces during the peri-ovulatory period of the cycle. Heightened interest for stimuli of significant reproductive relevance during periods of high conception risk may help guide social and sexual behavior in the rhesus monkey.
Address Department of Psychology, University of Massachusetts-Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA. alacreuse@psych.umass.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909232 Approved no
Call Number Equine Behaviour @ team @ Serial 2452
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H.
Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull
Volume 70 Issue 2 Pages 124-157
Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves
Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.
Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-9230 ISBN Medium
Area Expedition Conference
Notes PMID:16782503 Approved no
Call Number Equine Behaviour @ team @ Serial 2623
Permanent link to this record
 

 
Author Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L.
Title Orientation in the cuttlefish Sepia officinalis: response versus place learning Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 29-36
Keywords Animals; *Decapodiformes; Exploratory Behavior; *Maze Learning; Memory; *Space Perception
Abstract Several studies have demonstrated that mammals, birds and fish use comparable spatial learning strategies. Unfortunately, except in insects, few studies have investigated spatial learning mechanisms in invertebrates. Our study aimed to identify the strategies used by cuttlefish (Sepia officinalis) to solve a spatial task commonly used with vertebrates. A new spatial learning procedure using a T-maze was designed. In this maze, the cuttlefish learned how to enter a dark and sandy compartment. A preliminary test confirmed that individual cuttlefish showed an untrained side-turning preference (preference for turning right or left) in the T-maze. This preference could be reliably detected in a single probe trial. In the following two experiments, each individual was trained to enter the compartment opposite to its side-turning preference. In Experiment 1, distal visual cues were provided around the maze. In Experiment 2, the T-maze was surrounded by curtains and two proximal visual cues were provided above the apparatus. In both experiments, after acquisition, strategies used by cuttlefish to orient in the T-maze were tested by creating a conflict between the formerly rewarded algorithmic behaviour (turn, response learning) and the visual cues identifying the goal (place learning). Most cuttlefish relied on response learning in Experiment 1; the two strategies were used equally often in Experiment 2. In these experiments, the salience of cues provided during the experiment determined whether cuttlefish used response or place learning to solve this spatial task. Our study demonstrates for the first time the presence of multiple spatial strategies in cuttlefish that appear to closely parallel those described in vertebrates.
Address Laboratoire de Physiologie du Comportement des Cephalopodes, Universite de Caen, Esplanade de la Paix, 14032, Caen cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16794852 Approved no
Call Number Equine Behaviour @ team @ Serial 2461
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G.
Title How fish do geometry in large and in small spaces Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 47-54
Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception
Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.
Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16794851 Approved no
Call Number Equine Behaviour @ team @ Serial 2462
Permanent link to this record
 

 
Author Wallace, D.G.; Hamilton, D.A.; Whishaw, I.Q.
Title Movement characteristics support a role for dead reckoning in organizing exploratory behavior Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 3 Pages 219-228
Keywords Animals; *Association Learning; *Exploratory Behavior; Female; *Motor Activity; *Orientation; Problem Solving; Rats; Rats, Long-Evans; Space Perception; *Spatial Behavior
Abstract Rat exploration is an organized series of trips. Each exploratory trip involves an outward tour from the refuge followed by a return to the refuge. A tour consists of a sequence of progressions with variable direction and speed concatenated by stops, whereas the return consists of a single direct progression. We have argued that processing self-movement information generated on the tour allows a rat to plot the return to the refuge. This claim has been supported by observing consistent differences between tour and return segments independent of ambient cue availability; however, this distinction was based on differences in movement characteristics derived from multiple progressions and stops on the tour and the single progression on the return. The present study examines movement characteristics of the tour and return progressions under novel-dark and light conditions. Three novel characteristics of progressions were identified: (1) linear speeds and path curvature of exploratory trips are negatively correlated, (2) tour progression maximum linear speed and temporal pacing varies as a function of travel distance, and (3) return progression movement characteristics are qualitatively different from tour progressions of comparable length. These observations support a role for dead reckoning in organizing exploratory behavior.
Address Psychology Department, Northern Illinois University, DeKalb, IL 60115-2892, USA. dwallace@niu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16767471 Approved no
Call Number Equine Behaviour @ team @ Serial 2463
Permanent link to this record