toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cohen, J.; Pardy, S.; Solway, H.; Graham, H. doi  openurl
  Title Chunking versus foraging search patterns by rats in the hierarchically baited radial maze Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 2 Pages 93-104  
  Keywords Animals; Exploratory Behavior; *Feeding Behavior; Male; *Maze Learning; Rats; Rats, Long-Evans  
  Abstract Rats were exposed to a radial maze containing six black smooth arms and six wire-grid-covered arms and a striped 'exit arm' in experiment 1. The probability of a black or grid arm being baited (5/6 vs 1/6) with sunflower seeds was associated with its proximal cue for some rats (the Relevant Arm Cue group) but not for others (the Irrelevant Arm Cue group). All rats could terminate a trial and receive a highly preferred morsel of apple by entering the exit arm only after having sampled all six seed-baited arms. Relevant Arm Cue rats usually chose some arms from the more densely baited set before choosing an arm from the less densely baited set and made fewer reentries than Irrelevant Arm Cue rats. Although such clustered, higher choice accuracy in the Relevant Arm Cue group corresponds to human clustered, better recall of verbal items from lists hierarchically organized by categories, these rats did not similarly exhaustively retrieve items (arm locations). That is, when required to terminate a trial by entering the 'exit' arm for an apple morsel after having sampled all seed-baited arms, both groups were equally unable to withhold making nonrewarded premature exits. This nonexhaustive foraging search pattern was maintained in the next two experiments in which the radial maze was reduced to three black and three grid arms along with the striped 'exit' arm and in which black and grid arm cues were paired with number of seeds (eight or one) in an arm for Relevant Arm Cue rats. Although Relevant Arm Cue rats displayed perfect clustering by entering all eight-seeded arms before a one-seeded arm, they made more premature exits and reentries into eight-seeded arms in experiment 2 or when forced to enter all eight-seeded arms in experiment 3 than did Irrelevant Arm Cue rats. These foraging tendencies prevent accurate estimations of the amount of information (i.e., arm locations) rats can 'chunk'.  
  Address Department of Psychology, University of Windsor, Windsor, Ontario N9B 3P4, Canada. jcohen@uwindsor.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12720109 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2574  
Permanent link to this record
 

 
Author (up) Cole, P.D.; Adamo, S.A. doi  openurl
  Title Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 27-30  
  Keywords Animals; *Appetitive Behavior; *Association Learning; *Conditioning, Classical; Female; Male; *Mollusca; Photic Stimulation; *Predatory Behavior  
  Abstract Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.  
  Address Department of Psychology, Dalhousie University Halifax, Nova Scotia, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15592760 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2500  
Permanent link to this record
 

 
Author (up) Collier-Baker, E.; Davis, J.M.; Nielsen, M.; Suddendorf, T. doi  openurl
  Title Do chimpanzees (Pan troglodytes) understand single invisible displacement? Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 1 Pages 55-61  
  Keywords Animals; Behavior, Animal; *Cognition; Male; Pan troglodytes/*psychology; *Space Perception; *Spatial Behavior; Task Performance and Analysis; *Visual Perception  
  Abstract Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.  
  Address Early Cognitive Development Unit, School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia. e.collier-baker@psy.uq.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16163481 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2482  
Permanent link to this record
 

 
Author (up) Cook, R. G.; Tauro, T. L. doi  openurl
  Title Object-goal positioning influences spatial representation in rats Type Journal Article
  Year 1999 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 2 Issue 1 Pages 55-62  
  Keywords  
  Abstract Three tests investigated how the geometric relation between object/landmarks and goals influenced spatial choice behavior in rats. Two groups searched for hidden food in an object-filled circular arena containing 24 small poles. For the “Proximal” group, four distinct objects in a square configuration were placed close to four baited poles. For the “Distal” group, the identical configuration of objects was rotated 45° relative to the poles containing the hidden food. The Proximal group learned to locate the baited poles more quickly than the Distal group. Tests with removed and rearranged landmarks indicated that the two groups learned to use the objects differently. The results suggested that close proximity of objects to goals encouraged their use as beacons, while greater distance of objects from goals resulted in the global encoding of the geometric properties of the arena and the use of the objects as landmarks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3137  
Permanent link to this record
 

 
Author (up) Cook, R.G.; Shaw, R.; Blaisdell, A.P. doi  openurl
  Title Dynamic object perception by pigeons: discrimination of action in video presentations Type Journal Article
  Year 2001 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 4 Issue 3 Pages 137-146  
  Keywords  
  Abstract Two experiments examined the discrimination by pigeons of relative motion using computer-generated video stimuli. Using a go/no-go procedure, pigeons were tested with video stimuli in which the camera's perspective went either “around” or “through” an approaching object in a semi-realistic context. Experiment 1 found that pigeons could learn this discrimination and transfer it to videos composed from novel objects. Experiment 2 found that the order of the video's frames was critical to the discrimination of the videos. We hypothesize that the pigeons perceived a three-dimensional representation of the objects and the camera's relative motion and used this as the primary basis for discrimination. It is proposed that the pigeons might be able to form generalized natural categories for the different kinds of motions portrayed in the videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3142  
Permanent link to this record
 

 
Author (up) Cunningham, E.; Janson, C. doi  openurl
  Title A socioecological perspective on primate cognition, past and present Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume Issue Pages  
  Keywords  
  Abstract The papers in this special issue examine the relationship between social and ecological cognition in primates. We refer to the intersection of these two domains as socioecological cognition. Examples of socioecological cognition include socially learned predator alarm calls and socially sensitive foraging decisions. In this review we consider how primate cognition may have been shaped by the interaction of social and ecological influences in their evolutionary history. The ability to remember distant, out-of-sight locations is an ancient one, shared by many mammals and widespread among primates. It seems some monkeys and apes have evolved the ability to form more complex representations of resources, integrating “what-where-how much” information. This ability allowed anthropoids to live in larger, more cohesive groups by minimizing competition for limited resources between group members. As group size increased, however, competition for resources also increased, selecting for enhanced social skills. Enhanced social skills in turn made a more sophisticated relationship to the environment possible. The interaction of social and ecological influences created a spiraling effect in the evolution of primate intelligence. In contrast, lemurs may not have evolved the ability to form complex representations which would allow them to consider the size and location of resources. This lack in lemur ecological cognition may restrict the size of frugivorous lemur social groups, thereby limiting the complexity of lemur social life. In this special issue, we have brought together two review papers, five field studies, and one laboratory study to investigate the interaction of social and ecological factors in relation to foraging. Our goal is to stimulate research that considers social and ecological factors acting together on cognitive evolution, rather than in isolation. Cross fertilization of experimental and observational studies from captivity and the field is important for increasing our understanding of this relationship.  
  Address Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY, 10010-4086, USA, ec46@nyu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17387529 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2410  
Permanent link to this record
 

 
Author (up) Cunningham, E.; Janson, C. doi  openurl
  Title Integrating information about location and value of resources by white-faced saki monkeys ( Pithecia pithecia ) Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 3 Pages 293-304  
  Keywords  
  Abstract Abstract  Most studies of spatial memory in primates focus on species that inhabit large home ranges and have dispersed, patchy resources. Researchers assume that primates use memory to minimize distances traveled between resources. We investigated the use of spatial memory in a group of six white-faced sakis (Pithecia pithecia) on 12.8-ha Round Island, Guri Lake, Venezuela during a period of fruit abundance. The sakis movements were analyzed with logistic regressions, a predictive computer model and a computer model that simulates movements. We considered all the resources available to the sakis and compared observed distances to predicted distances from a computer model for foragers who know nothing about the location of resources. Surprisingly, the observed distances were four times greater than the predicted distances, suggesting that the sakis passed by a majority of the available fruit trees without feeding. The odds of visiting a food tree, however, were significantly increased if the tree had been visited in the previous 3 days and had more than 100 fruit. The sakis preferred resources were highly productive fruit trees, Capparis trees, and trees with water holes. They traveled efficiently to these sites. The sakis choice of feeding sites indicate that they combined knowledge acquired by repeatedly traveling through their home range with “what” and “where” information gained from individual visits to resources. Although the sakis foraging choices increased the distance they traveled overall, choosing more valued sites allowed the group to minimize intragroup feeding competition, maintain intergroup dominance over important resources, and monitor the state of resources throughout their home range. The sakis foraging decisions appear to have used spatial memory, elements of episodic-like memory and social and nutritional considerations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3209  
Permanent link to this record
 

 
Author (up) Custance, D.; Whiten, A.; Sambrook, T.; Galdikas, B. doi  openurl
  Title Testing for social learning in the “artificial fruit” processing of wildborn orangutans (Pongo pygmaeus), Tanjung Puting, Indonesia Type Journal Article
  Year 2001 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 4 Issue 3 Pages 305-313  
  Keywords  
  Abstract Social learning about actions, objects and sequencing was investigated in a group of 14 wildborn orangutans (four adult females and ten 3- to 5-year-old juveniles). Human models showed alternative methods and sequences for dismantling an artificial fruit to groups of participants matched by gender and age. Each participant received three to six 2-min trials in which they were given access to the artificial fruit for manipulation. Independent coders, who were unaware of which method each participant had seen, gave confidence ratings and collected action frequencies from watching video recordings of the experimental trials. No significant differences were found between groups in terms of the coders' confidence ratings, the action frequencies or the sequence of manipulations. These negative results may at least partly reflect the immaturity of a large proportion of the participants. A positive correlation was found between age and the degree of matching to the method shown. Although none of the juveniles succeeded in opening the “fruit”, two out of the four adults did so and they also seemed to match more closely the sequence of elements touched over successive trials. The results are compared with similar data previously collected from human children, chimpanzees, gorillas, capuchin monkeys and common marmosets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3370  
Permanent link to this record
 

 
Author (up) Czeschlik, T. doi  openurl
  Title Animal cognition – the phylogeny and ontogeny of cognitive abilities Type Journal Article
  Year 1998 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 1 Issue 1 Pages 1-2  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 3100  
Permanent link to this record
 

 
Author (up) Dacke, M.; Srinivasan, M. url  doi
openurl 
  Title Evidence for counting in insects Type Journal Article
  Year 2008 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 11 Issue 4 Pages 683-689  
  Keywords  
  Abstract Abstract  Here we investigate the counting ability in honeybees by training them to receive a food reward after they have passed a specific number of landmarks. The distance to the food reward is varied frequently and randomly, whilst keeping the number of intervening landmarks constant. Thus, the bees cannot identify the food reward in terms of its distance from the hive. We find that bees can count up to four objects, when they are encountered sequentially during flight. Furthermore, bees trained in this way are able count novel objects, which they have never previously encountered, thus demonstrating that they are capable of object-independent counting. A further experiment reveals that the counting ability that the bees display in our experiments is primarily sequential in nature. It appears that bees can navigate to food sources by maintaining a running count of prominent landmarks that are passed en route, provided this number does not exceed four.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4938  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print