toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Drummond, H. doi  openurl
  Title Dominance in vertebrate broods and litters Type Journal Article
  Year (down) 2006 Publication Quarterly Review of Biology Abbreviated Journal  
  Volume 81 Issue 1 Pages 3-32  
  Keywords Aggression; Assessment; Dominance; Individual recognition; Sibling conflict; Trained losing  
  Abstract Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as “aggression-submission,” “aggression-resistance, ” “aggression-aggression,” “aggression-avoidance,” “rotating dominance,” and “flock dominance.” These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the “site-specific dominance” (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. Copyright © 2006 by The University of Chicago. All rights reserved.  
  Address Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, 04510 D.F., Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 20; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4559  
Permanent link to this record
 

 
Author Trillmich, F.; Rehling, A. url  doi
isbn  openurl
  Title Animal Communication: Parent-Offspring Type Book Chapter
  Year (down) 2006 Publication Encyclopedia of Language & Linguistics Abbreviated Journal  
  Volume Issue Pages 284-288  
  Keywords Begging Strategies; Communication; Competition; Feeding Strategies; Fitness; Parental Care; Parent-Offspring Conflict; Recognition; Sibling Conflict  
  Abstract Parent-offspring communication has evolved under strong selection to guarantee that the valuable resource of parental care is expended efficiently on raising offspring. To ensure allocation of parental care to their own offspring, individual recognition becomes established in higher vertebrates when the young become mobile at a time when a nest site can no longer provide a safe cue to recognition. Such recognition needs to be established by rapid, sometimes imprinting-like, processes in animals producing precocial offspring. In parents, offering strategies that stimulate feeding and entice offspring to approach the right site have evolved. Such parental signals can be olfactory, acoustic, or visual. In offspring, begging strategies involve shuffling for the best place to obtain food – be this the most productive teat or the best position in the nest. This involves signals that make the offspring particularly obvious to the parent. Parents often feed young according to their signaling intensity but may also show favoritism for weaker offspring. Offspring signals also serve to communicate the continuing presence of the young and may thereby maintain brood-care behavior in parents. Internal processes in parents may end parental care irrespective of further signaling by offspring, thus ensuring that offspring cannot manipulate parents into providing substantially more care than is optimal for their own fitness.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Oxford Editor Keith Brown  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780080448541 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4642  
Permanent link to this record
 

 
Author Lim, M.M.; Young, L.J. url  doi
openurl 
  Title Neuropeptidergic regulation of affiliative behavior and social bonding in animals Type Journal Article
  Year (down) 2006 Publication Hormones and Behavior Abbreviated Journal Hormon. Behav.  
  Volume 50 Issue 4 Pages 506-517  
  Keywords Vasopressin receptor; Oxytocin receptor; Social recognition; Social behavior; Pair bond; Autism; Neuropeptides  
  Abstract Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6416  
Permanent link to this record
 

 
Author de Waal, F.B.M.; Dindo, M.; Freeman, C.A.; Hall, M.J. doi  openurl
  Title The monkey in the mirror: hardly a stranger Type Journal Article
  Year (down) 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 102 Issue 32 Pages 11140-11147  
  Keywords Analysis of Variance; Animals; Cebus/*physiology; *Discrimination (Psychology); Empathy; Female; Male; Observation; *Recognition (Psychology); *Self Concept; Sex Factors  
  Abstract It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self-other distinction intermediate between seeing their mirror image as other and recognizing it as self.  
  Address Living Links Center, Emory University, Atlanta, GA 30322, USA. dewaal@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055557 Approved no  
  Call Number refbase @ user @ Serial 164  
Permanent link to this record
 

 
Author Zentall, T.R. doi  openurl
  Title Configural/holistic processing or differential element versus compound similarity Type Journal Article
  Year (down) 2005 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 141-142  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract Before accepting a configural or holistic account of visual perception, one should be sure that an analytic (elemental) account does not provide an equal or better explanation of the results. I suggest that when one forms a compound of a color and a line orientation with one element previously trained as an S+ and the other as an S-, the resulting transfer found will depend on the relative salience of the two elements, and most important, the similarity of the compound to each of the training stimuli. Thus, if a line orientation is placed on a colored background (a separable compound), it will appear more like the colored field used in training, and color will control responding. However, if the line itself is colored (an integral compound), the compound will appear more like the line used in training, and line orientation will control responding. Not only does this account do a better job of explaining the data but it is simpler and it is testable.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15449103 Approved no  
  Call Number refbase @ user @ Serial 229  
Permanent link to this record
 

 
Author Santos, L.R.; Barnes, J.L.; Mahajan, N. doi  openurl
  Title Expectations about numerical events in four lemur species (Eulemur fulvus, Eulemur mongoz, Lemur catta and Varecia rubra) Type Journal Article
  Year (down) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 4 Pages 253-262  
  Keywords Animals; *Behavior, Animal; Female; Lemuridae/classification/*psychology; Male; *Pattern Recognition, Visual  
  Abstract Although much is known about how some primates--in particular, monkeys and apes--represent and enumerate different numbers of objects, very little is known about the numerical abilities of prosimian primates. Here, we explore how four lemur species (Eulemur fulvus, E. mongoz, Lemur catta, and Varecia rubra) represent small numbers of objects. Specifically, we presented lemurs with three expectancy violation looking time experiments aimed at exploring their expectations about a simple 1+1 addition event. In these experiments, we presented subjects with displays in which two lemons were sequentially added behind an occluder and then measured subjects' duration of looking to expected and unexpected outcomes. In experiment 1, subjects looked reliably longer at an unexpected outcome of only one object than at an expected outcome of two objects. Similarly, subjects in experiment 2 looked reliably longer at an unexpected outcome of three objects than at an expected outcome of two objects. In experiment 3, subjects looked reliably longer at an unexpected outcome of one object twice the size of the original than at an expected outcome of two objects of the original size. These results suggest that some prosimian primates understand the outcome of simple arithmetic operations. These results are discussed in light of similar findings in human infants and other adult primates.  
  Address Department of Psychology, Yale University, New Haven, CT 06520, USA. laurie.santos@yale.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15729569 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2492  
Permanent link to this record
 

 
Author Palleroni, A.; Hauser, M.; Marler, P. doi  openurl
  Title Do responses of galliform birds vary adaptively with predator size? Type Journal Article
  Year (down) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 200-210  
  Keywords Adaptation, Psychological; Animals; *Avoidance Learning; *Behavior, Animal; Body Size; Chickens; Female; Food Chain; Male; *Pattern Recognition, Visual; *Predatory Behavior; *Recognition (Psychology); Risk Assessment  
  Abstract Past studies of galliform anti-predator behavior show that they discriminate between aerial and ground predators, producing distinctive, functionally referential vocalizations to each class. Within the category of aerial predators, however, studies using overhead models, video images and observations of natural encounters with birds of prey report little evidence that galliforms discriminate between different raptor species. This pattern suggests that the aerial alarm response may be triggered by general features of objects moving in the air. To test whether these birds are also sensitive to more detailed differences between raptor species, adult chickens with young were presented with variously sized trained raptors (small, intermediate, large) under controlled conditions. In response to the small hawk, there was a decline in anti-predator aggression and in aerial alarm calling as the young grew older and less vulnerable to attack by a hawk of this size. During the same developmental period, responses to the largest hawk, which posed the smallest threat to the young at all stages, did not change; there were intermediate changes at this time in response to the middle-sized hawk. Thus the anti-predator behavior of the adult birds varied in an adaptive fashion, changing as a function of both chick age and risk. We discuss these results in light of current issues concerning the cognitive mechanisms underlying alarm calling behavior in animals.  
  Address Primate Cognitive Neuroscience Laboratory, Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA, 02138, USA. aliparti@wjh.harvard.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15660209 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2496  
Permanent link to this record
 

 
Author Harris, E.H.; Washburn, D.A. doi  openurl
  Title Macaques' (Macaca mulatta) use of numerical cues in maze trials Type Journal Article
  Year (down) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 3 Pages 190-199  
  Keywords Animals; *Cues; *Discrimination Learning; Macaca mulatta/*psychology; Male; Mathematics; *Maze Learning; *Pattern Recognition, Visual  
  Abstract We tested the ability of number-trained rhesus monkeys to use Arabic numeral cues to discriminate between different series of maze trials and anticipate the final trial in each series. The monkeys' prior experience with numerals also allowed us to investigate spontaneous transfer between series. A total of four monkeys were tested in two experiments. In both experiments, the monkeys were trained on a computerized task consisting of three reinforced maze trials followed by one nonreinforced trial. The goal of the maze was an Arabic numeral 3, which corresponded to the number of reinforced maze trials in the series. In experiment 1 (n=2), the monkeys were given probe trials of the numerals 2 and 4 and in experiment 2 (n=2), they were given probe trials of the numerals 2-8. The monkeys receiving the probe trials 2 and 4 showed some generalization to the new numerals and developed a pattern of performing more slowly on the nonreinforced trial than the reinforced trial before it for most series, indicating the use of the changing numeral cues to anticipate the nonreinforced trial. The monkeys receiving probe trials of the numerals 2-8 did not predict precisely when the nonreinforced trial would occur in each series, but they did incorporate the changing numerals into their strategy for performing the task. This study provides the first evidence that number-trained monkeys can use Arabic numerals to perform a task involving sequential presentations.  
  Address Georgia State University, Atlanta, GA, USA. eharris11@gsu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15654597 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2498  
Permanent link to this record
 

 
Author Werner, C.W.; Tiemann, I.; Cnotka, J.; Rehkamper, G. doi  openurl
  Title Do chickens (Gallus gallus f. domestica) decompose visual figures? Type Journal Article
  Year (down) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 2 Pages 129-140  
  Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception  
  Abstract To investigate whether learning to discriminate between visual compound stimuli depends on decomposing them into constituting features, hens were first trained to discriminate four features (red, green, horizontal, vertical) from two dimensions (colour, line orientation). After acquisition, hens were trained with compound stimuli made up from these dimensions in two ways: a separable (line on a coloured background) stimulus and an integral one (coloured line). This compound training included a reversal of reinforcement of only one of the two dimensions (half-reversal). After having achieved the compound stimulus discrimination, a second dimensional training identical to the first was performed. Finally, in the second compound training the other dimension was reversed. Two major results were found: (1) an interaction between the dimension reversed and the type of compound stimulus: in compound training with colour reversal, separable compound stimuli were discriminated worse than integral compounds and vice versa in compound training with line orientation reversed. (2) Performance in the second compound training was worse than in the first one. The first result points to a similar mode of processing for separable and integral compounds, whereas the second result shows that the whole stimulus is psychologically superior to its constituting features. Experiment 2 repeated experiment 1 using line orientation stimuli of reversed line and background brightness. Nevertheless, the results were similar to experiment 1. Results are discussed in the framework of a configural exemplar theory of discrimination that assumes the representation of the whole stimulus situation combined with transfer based on a measure of overall similarity.  
  Address C. and O. Vogt Institute of Brain Research, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225, Dusseldorf, Germany. wernerc@uni-duesseldorf.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15490291 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2503  
Permanent link to this record
 

 
Author Nielsen, M.; Collier-Baker, E.; Davis, J.M.; Suddendorf, T. doi  openurl
  Title Imitation recognition in a captive chimpanzee (Pan troglodytes) Type Journal Article
  Year (down) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 31-36  
  Keywords Animals; *Awareness; Humans; *Imitative Behavior; Male; Motor Activity; *Movement; Pan troglodytes/*psychology; *Recognition (Psychology)  
  Abstract This study investigated the ability of a captive chimpanzee (Pan troglodytes) to recognise when he is being imitated. In the experimental condition of test 1a, an experimenter imitated the postures and behaviours of the chimpanzee as they were being displayed. In three control conditions the same experimenter exhibited (1) actions that were contingent on, but different from, the actions of the chimpanzee, (2) actions that were not contingent on, and different from, the actions of the chimpanzee, or (3) no action at all. The chimpanzee showed more “testing” sequences (i.e., systematically varying his actions while oriented to the imitating experimenter) and more repetitive behaviour when he was being imitated, than when he was not. This finding was replicated 4 months later in test 1b. When the experimenter repeated the same actions she displayed in the experimental condition of test 1a back to the chimpanzee in test 2, these actions now did not elicit those same testing sequences or repetitive behaviours. However, a live imitation condition did. Together these results provide the first evidence of imitation recognition in a nonhuman animal.  
  Address Early Cognitive Development Unit, School of Psychology, University of Queensland, QLD, Brisbane, 4072, Australia. nielsen@psy.uq.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15322942 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2515  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print