toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year (up) 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis” argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Lusseau, D. url  doi
openurl 
  Title Evidence for social role in a dolphin social network Type Journal Article
  Year (up) 2007 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 21 Issue 3 Pages 357-366  
  Keywords  
  Abstract Abstract  Social animals have to take into consideration the behaviour of conspecifics when making decisions to go by their daily lives. These decisions affect their fitness and there is therefore an evolutionary pressure to try making the right choices. In many instances individuals will make their own choices and the behaviour of the group will be a democratic integration of everyone’s decision. However, in some instances it can be advantageous to follow the choice of a few individuals in the group if they have more information regarding the situation that has arisen. Here I provide early evidence that decisions about shifts in activity states in a population of bottlenose dolphin follow such a decision-making process. This unshared consensus is mediated by a non-vocal signal, which can be communicated globally within the dolphin school. These signals are emitted by individuals that tend to have more information about the behaviour of potential competitors because of their position in the social network. I hypothesise that this decision-making process emerged from the social structure of the population and the need to maintain mixed-sex schools.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5154  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I. url  doi
openurl 
  Title Evidence for coevolution of sociality and relative brain size in three orders of mammals Type Journal Article
  Year (up) 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Pérez-Barbería2007 Serial 6221  
Permanent link to this record
 

 
Author Krueger, K. doi  openurl
  Title Social Ecology of Horses Type Book Chapter
  Year (up) 2008 Publication Ecology of Social Evolution Abbreviated Journal  
  Volume Issue Pages 195-206  
  Keywords  
  Abstract Horses (Equidae ) are believed to clearly demonstrate the links between ecology and social organization. Their social cognitive abilities enable them to succeed in many different environments, including those provided for them by humans, or the ones domestic horses encounter when escaping from their human care takers. Living in groups takes different shapes in equids. Their aggregation and group cohesion can be explained by Hamilton“s selfish herd theory. However, when an individual joins and to which group it joins appears to be an active individual decision depending on predation pressure, intra group harassment and resource availability. The latest research concerning the social knowledge horses display in eavesdropping experiments affirms the need for an extension of simple herd concepts in horses for a cognitive component. Horses obviously realize the social composition of their group and determine their own position in it. The horses exceedingly flexible social behavior demands for explanations about the cognitive mechanisms, which allow them to make individual decisions. ”Ecology conditions like those that favour the evolution of open behavioural programs sometimes also favour the evolution of the beginnings of consciousness, by favouring conscious choice. Or in other words, consciousness originates with the choice that are left open by open behavioural programs." Popper (1977)  
  Address  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Heidelberg Editor j. Korb and J. Heinze  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4387  
Permanent link to this record
 

 
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A. url  doi
openurl 
  Title The emergence of leaders and followers in foraging pairs when the qualities of individuals differ Type Journal Article
  Year (up) 2008 Publication BMC Evolutionary Biology Abbreviated Journal BMC Evol Biol  
  Volume 8 Issue Pages 51  
  Keywords Animals; *Feeding Behavior; *Food Chain; *Models, Biological; *Social Dominance  
  Abstract BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.  
  Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. sean.rands@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18282297 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5126  
Permanent link to this record
 

 
Author Dong, D.; Jones, G.; Zhang, S. url  doi
openurl 
  Title Dynamic evolution of bitter taste receptor genes in vertebrates Type Journal Article
  Year (up) 2009 Publication BMC Evolutionary Biology Abbreviated Journal  
  Volume 9 Issue 1 Pages 12  
  Keywords  
  Abstract Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R), which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Dong2009 Serial 6637  
Permanent link to this record
 

 
Author Bergmüller, R. openurl 
  Title Animal Personality and Behavioural Syndromes Type Book Chapter
  Year (up) 2010 Publication Animal Behaviour – Evolution and Mechanisms Abbreviated Journal  
  Volume Issue Pages 587-621  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Heidelberg Editor Kappeler, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5179  
Permanent link to this record
 

 
Author van Schaik, C.P. doi  isbn
openurl 
  Title Social learning and culture in animals Type Book Chapter
  Year (up) 2010 Publication Animal Behaviour: Evolution and Mechanisms Abbreviated Journal  
  Volume Issue Pages 623-653  
  Keywords Life Sciences  
  Abstract Most animals must learn some of the behaviours in their repertoire, and some must learn most. Although learning is often thought of as an individual exercise, in nature much learning is social, i.e. under the influence of conspecifics. Social learners acquire novel information or skills faster and at lower cost, but risk learning false information or useless skills. Social learning can be divided into learning from social information and learning through social interaction. Different species have different mechanisms of learning from social information, ranging from selective attention to the environment due to the presence of others to copying of complete motor sequences. In vertical (or oblique) social learning, naïve individuals often learn skills or knowledge from parents (or other adults), whereas horizontal social learning is from peers, either immatures or adults, and more often concerns eavesdropping and public information use. Because vertical social learning is often adaptive, maturing individuals often have a preference for it over individual exploration. The more cognitively demanding social learning abilities probably evolved in this context, in lineages where offspring show long association with parents and niches are complex. Because horizontal learning can be maladaptive, especially when perishable information has become outdated, animals must decide when to deploy social learning. Social learning of novel skills can lead to distinct traditions or cultures when the innovations are sufficiently rare and effectively transmitted socially. Animal cultures may be common but to date taxonomic coverage is insufficient to know how common. Cultural evolution is potentially powerful, but largely confined to humans, for reasons currently unknown. A general theory of culture is therefore badly needed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Kappeler, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-02624-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5268  
Permanent link to this record
 

 
Author Kerth, G. doi  isbn
openurl 
  Title Group decision-making in animal societies Type Book Chapter
  Year (up) 2010 Publication Animal Behaviour: Evolution and Mechanisms Abbreviated Journal  
  Volume Issue Pages 241-265  
  Keywords Life Sciences  
  Abstract Individuals need to coordinate their activities to benefit from group living. Thus group decisions are essential for societies, especially if group members cooperate with each other. Models show that shared (democratic) decisions outperform unshared (despotic) decisions, even if individuals disagree about actions. This is surprising as in most other contexts, differences in individual preferences lead to sex-, age-, or kin-specific behaviour. Empirical studies testing the predictions of the theoretical models have only recently begun to emerge. This applies particularly to group decisions in fission-fusion societies, where individuals can avoid decisions that are not in their interest. After outlining the basic ideas and theoretical models on group decision-making I focus on the available empirical studies. Originally most of the relevant studies have been on social insects and fish but recently an increasing number of studies on mammals and birds have been published, including some that deal with wild long-lived animals living in complex societies. This includes societies where group members have different interests, as in most mammals, and which have been less studied compared to eusocial insects that normally have no conflict among their colony members about what to do. I investigate whether the same decision rules apply in societies with conflict and without conflict, and outline open questions that remain to be studied. The chapter concludes with a synthesis on what is known about group decision-making in animals and an outlook on what I think should be done to answer the open questions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Kappeler, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-02624-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5381  
Permanent link to this record
 

 
Author Bergmüller, R.; Taborsky, M. url  doi
openurl 
  Title Animal personality due to social niche specialisation Type Journal Article
  Year (up) 2010 Publication Trends in Ecology & Evolution Abbreviated Journal  
  Volume 25 Issue 9 Pages 504-511  
  Keywords  
  Abstract The existence of 'animal personality', i.e. consistent individual differences in behaviour across time and contexts, is an evolutionary puzzle that has recently generated considerable research interest. Although social factors are generally considered to be important, it is as yet unclear how they might select for personality. Drawing from ecological niche theory, we explore how social conflict and alternative social options can be key factors in the evolution and development of consistent individual differences in behaviour. We discuss how animal personality research might benefit from insights into the study of alternative tactics and illustrate how selection can favour behavioural diversification and consistency due to fitness benefits resulting from conflict reduction among social partners.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6646  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print