toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hare, B.; Plyusnina, I.; Ignacio, N.; Schepina, O.; Stepika, A.; Wrangham, R.; Trut, L. doi  openurl
  Title Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication Type Journal Article
  Year (down) 2005 Publication Current biology : CB Abbreviated Journal Curr Biol  
  Volume 15 Issue 3 Pages 226-230  
  Keywords Animals; *Animals, Domestic; Cognition/*physiology; *Cues; *Evolution; Foxes/*physiology; *Selection (Genetics); Social Behavior; Species Specificity  
  Abstract Dogs have an unusual ability for reading human communicative gestures (e.g., pointing) in comparison to either nonhuman primates (including chimpanzees) or wolves . Although this unusual communicative ability seems to have evolved during domestication , it is unclear whether this evolution occurred as a result of direct selection for this ability, as previously hypothesized , or as a correlated by-product of selection against fear and aggression toward humans--as is the case with a number of morphological and physiological changes associated with domestication . We show here that fox kits from an experimental population selectively bred over 45 years to approach humans fearlessly and nonaggressively (i.e., experimentally domesticated) are not only as skillful as dog puppies in using human gestures but are also more skilled than fox kits from a second, control population not bred for tame behavior (critically, neither population of foxes was ever bred or tested for their ability to use human gestures) . These results suggest that sociocognitive evolution has occurred in the experimental foxes, and possibly domestic dogs, as a correlated by-product of selection on systems mediating fear and aggression, and it is likely the observed social cognitive evolution did not require direct selection for improved social cognitive ability.  
  Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA. hare@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15694305 Approved no  
  Call Number refbase @ user @ Serial 594  
Permanent link to this record
 

 
Author Barrett, L.; Henzi, P. doi  openurl
  Title The social nature of primate cognition Type Journal Article
  Year (down) 2005 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 272 Issue 1575 Pages 1865-1875  
  Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/*physiology; *Evolution; Intelligence/*physiology; Primates/*physiology; *Social Behavior  
  Abstract The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  
  Address School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. louiseb@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16191591 Approved no  
  Call Number Serial 2086  
Permanent link to this record
 

 
Author Gomez, J.-C. doi  openurl
  Title Species comparative studies and cognitive development Type Journal Article
  Year (down) 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.  
  Volume 9 Issue 3 Pages 118-125  
  Keywords Animals; Attention/physiology; Brain/*growth & development; Child, Preschool; Cognition/*physiology; Concept Formation/physiology; Dogs; Evolution; Fixation, Ocular; Gorilla gorilla; Humans; Infant; Learning/*physiology; Macaca mulatta; Mental Recall/physiology; Personal Construct Theory; Psychomotor Performance/physiology; Species Specificity  
  Abstract The comparative study of infant development and animal cognition brings to cognitive science the promise of insights into the nature and origins of cognitive skills. In this article, I review a recent wave of comparative studies conducted with similar methodologies and similar theoretical frameworks on how two core components of human cognition--object permanence and gaze following--develop in different species. These comparative findings call for an integration of current competing accounts of developmental change. They further suggest that evolution has produced developmental devices capable at the same time of preserving core adaptive components, and opening themselves up to further adaptive change, not only in interaction with the external environment, but also in interaction with other co-developing cognitive systems.  
  Address Scottish Primate Research Group, School of Psychology, University of St Andrews, St Andrews, Fife KY15 9JU, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-6613 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15737820 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2851  
Permanent link to this record
 

 
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P. doi  openurl
  Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
  Year (down) 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 778-781  
  Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.  
  Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306809 Approved no  
  Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Cognitive science: rank inferred by reason Type Journal Article
  Year (down) 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 732-733  
  Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306792 Approved no  
  Call Number refbase @ user @ Serial 365  
Permanent link to this record
 

 
Author Cerutti, D.T.; Staddon, J.E.R. doi  openurl
  Title Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis Type Journal Article
  Year (down) 2004 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 30 Issue 1 Pages 45-57  
  Keywords Animals; Choice Behavior/*physiology; Cognition/*physiology; Columbidae; Male; Models, Psychological; Psychological Theory; *Reinforcement (Psychology); *Reinforcement Schedule; Time Perception/*physiology  
  Abstract In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.  
  Address Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708-1050, USA. cerutti@psych.duke.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14709114 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2768  
Permanent link to this record
 

 
Author Pickens, C.L.; Holland, P.C. doi  openurl
  Title Conditioning and cognition Type Journal Article
  Year (down) 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 28 Issue 7 Pages 651-661  
  Keywords Animals; Association Learning/physiology; Cognition/*physiology; Conditioning (Psychology)/*physiology; Discrimination Learning/physiology; Humans; Memory; Models, Psychological; Reinforcement (Psychology); Visual Perception/physiology  
  Abstract Animals' abilities to use internal representations of absent objects to guide adaptive behavior and acquire new information, and to represent multiple spatial, temporal, and object properties of complex events and event sequences, may underlie many aspects of human perception, memory, and symbolic thought. In this review, two classes of simple associative learning tasks that address these core cognitive capacities are discussed. The first set, including reinforcer revaluation and mediated learning procedures, address the power of Pavlovian conditioned stimuli to gain access, through learning, to representations of upcoming events. The second set of investigations concern the construction of complex stimulus representations, as illustrated in studies of contextual learning, the conjunction of explicit stimulus elements in configural learning procedures, and recent studies of episodic-like memory. The importance of identifying both cognitive process and brain system bases of performance in animal models is emphasized.  
  Address Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15555675 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2803  
Permanent link to this record
 

 
Author Sarter, M. doi  openurl
  Title Animal cognition: defining the issues Type Journal Article
  Year (down) 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 28 Issue 7 Pages 645-650  
  Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Humans; *Models, Animal; Psychopharmacology/methods; Reproducibility of Results  
  Abstract The assessment of cognitive functions in rodents represents a critical experimental variable in many research fields, ranging from the basic cognitive neurosciences to psychopharmacology and neurotoxicology. The increasing use of animal behavioral tests as 'assays' for the assessment of effects on learning and memory has resulted in a considerable heterogeneity of data, particularly in the field of behavioral and psycho pharmacology. The limited predictive validity of changes in behavioral performance observed in standard animal tests of learning and memory indicates that a renewed effort to scrutinize the validity of these tests is warranted. In humans, levels of processing (effortful vs. automatic) and categories of information (procedural vs. episodic/declarative) are important variables of cognitive operations. The design of tasks that assess the recall of 'episodic' or 'declarative' information appears to represent a particular challenge for research using laboratory rodents. For example, the hypothesis that changes in inspection time for a previously encountered place or object are based on the recall of declarative/episodic information requires substantiation. In order to generalize findings on the effects of neuronal or pharmacological manipulations on learning and memory, obtained from one species and one task, to other species and other tasks, the mediating role of important sets of variables which influence learning and memory (e.g. attentional, affective) needs to be determined. Similar to the view that a neuronal manipulation (e.g. a lesion) represents a theory of the condition modeled (e.g. a degenerative disorder), an animal behavioral task represents a theory of the behavioral/cognitive process of interest. Therefore, the test of hypotheses regarding the validity of procedures used to assess cognitive functions in animals is an inherent part of the research process.  
  Address Department of Psychology, University of Michigan, 4032 East Hall, 525 E. University Avenue, Ann Arbor, MI 48109-1109, USA. msarter@umich.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15555674 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2804  
Permanent link to this record
 

 
Author Gould, J.L. doi  openurl
  Title Animal cognition Type Journal Article
  Year (down) 2004 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 14 Issue 10 Pages R372-5  
  Keywords Animals; Awareness; Behavior, Animal/*physiology; Cognition/*physiology; Concept Formation; Decision Making; Instinct; Intelligence/*physiology; Learning/*physiology; Species Specificity  
  Abstract  
  Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. gould@princeton.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15186759 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4169  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
  Year (down) 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 62 Issue 2 Pages 108-116  
  Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity  
  Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12937349 Approved no  
  Call Number refbase @ user @ Serial 367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print