toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zentall, T.R.; Weaver, J.E.; Clement, T.S. openurl 
  Title Pigeons group time intervals according to their relative duration Type Journal Article
  Year (up) 2004 Publication Psychonomic bulletin & review Abbreviated Journal Psychon Bull Rev  
  Volume 11 Issue 1 Pages 113-117  
  Keywords Animals; Columbidae; *Discrimination (Psychology); Reinforcement (Psychology); Time Factors; Time Perception  
  Abstract In the present research, we asked whether pigeons tended to judge time intervals not only in terms of their absolute value but also relative to a duration from which they must be discriminated (i.e., longer or shorter). Pigeons were trained on two independent temporal discriminations. In one discrimination, sample durations of 2 and 8 sec were associated with, for example, red and green hue comparisons, respectively, and in the other discrimination, sample durations of 4 and 16 sec were associated with vertical and horizontal line comparisons, respectively. If pigeons are trained on a temporal discrimination and tested with intermediate durations, the subjective midpoint typically occurs close to the geometric mean of the two trained values. The 4- and 8-sec values were selected to be the geometric mean of the two values in the other discrimination. When a 4-sec test sample was presented with the comparisons from the 2- and 8-sec discrimination, the pigeons preferred the comparison associated with the shorter sample. Similarly, when an 8-sec test sample was presented with the comparisons from the 4- and 16-sec discrimination, the pigeons preferred the comparison associated with the longer sample. Thus, a relative grouping effect was found. That is, durations that should have produced indifferent choice were influenced by their relative durations (shorter than or longer than the alternative) during training.  
  Address Department of Psychology, University of Kentucky, Lexington, Kentucky 40506-0044, USA. zentall@pop.uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15116995 Approved no  
  Call Number refbase @ user @ Serial 231  
Permanent link to this record
 

 
Author Grosenick, L.; Clement, T.S.; Fernald, R.D. doi  openurl
  Title Fish can infer social rank by observation alone Type Journal Article
  Year (up) 2007 Publication Nature Abbreviated Journal Nature  
  Volume 445 Issue 7126 Pages 429-432  
  Keywords Aggression/physiology; Animals; Cognition/*physiology; Female; Fishes/*physiology; Learning/*physiology; Male; Models, Biological; *Social Dominance; Territoriality  
  Abstract Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A > B and B > C to infer A > C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems. Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them. Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.  
  Address Department of Biological Sciences, Stanford University, Stanford, California, 94305, USA. logang@stanford.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17251980 Approved no  
  Call Number refbase @ user @ Serial 600  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print