|   | 
Details
   web
Records
Author Jackson, R.R.; Pollard, S.D.; Cerveira, A.M.
Title Opportunistic use of cognitive smokescreens by araneophagic jumping spiders Type Journal Article
Year (up) 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 3 Pages 147-157
Keywords Animals; *Cognition; Movement; Optics; *Predatory Behavior; *Spiders; Touch; Visual Perception
Abstract Little is known about how a prey species' cognitive limitations might shape a predator's prey-capture strategy. A specific hypothesis is investigated: predators take advantage of times when the prey's attention is focussed on its own prey. Portia fimbriata, an araneophagic jumping spider (Salticidae) from Queensland, is shown in a series of 11 experiments to exploit opportunistically a situation in which a web-building spider on which it preys, Zosis genicularis (Uloboridae), is preoccupied with wrapping up its own prey. Experimental evidence supports three conclusions: (1). while relying on optical cues alone, P. fimbriata perceives when Z. genicularis is wrapping up prey; (2). when busy wrapping up prey, the responsiveness of Z. genicularis to cues from potential predators is diminished; and (3). P. fimbriata moves primarily during intervals when Z. genicularis is busy wrapping up prey. P. fimbriata's strategy is effective partly because the wrapping behaviour of Z. genicularis masks the web signals generated by the advancing P. fimbriata's footsteps and also because, while wrapping, Z. genicularis' attention is diverted away from predator-revealing cues.
Address Department of Zoology, University of Canterbury, Christchurch, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12357287 Approved no
Call Number Equine Behaviour @ team @ Serial 2598
Permanent link to this record
 

 
Author Burke, D.; Cieplucha, C.; Cass, J.; Russell, F.; Fry, G.
Title Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus) Type Journal Article
Year (up) 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 2 Pages 79-84
Keywords Animals; Echidna/*psychology; Ecology; Female; *Learning; *Memory; *Predatory Behavior; Reinforcement (Psychology)
Abstract Numerous previous investigators have explained species differences in spatial memory performance in terms of differences in foraging ecology. In three experiments we attempted to extend these findings by examining the extent to which the spatial memory performance of echidnas (or “spiny anteaters”) can be understood in terms of the spatio-temporal distribution of their prey (ants and termites). This is a species and a foraging situation that have not been examined in this way before. Echidnas were better able to learn to avoid a previously rewarding location (to “win-shift”) than to learn to return to a previously rewarding location (to “win-stay”), at short retention intervals, but were unable to learn either of these strategies at retention intervals of 90 min. The short retention interval results support the ecological hypothesis, but the long retention interval results do not.
Address Department of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia. darren_burke@uow.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12150039 Approved no
Call Number Equine Behaviour @ team @ Serial 2605
Permanent link to this record
 

 
Author Punzo, F.; Ludwig, L.
Title Contact with maternal parent and siblings affects hunting behavior, learning, and central nervous system development in spiderlings of Hogna carolinensis (Araeneae: Lycosidae) Type Journal Article
Year (up) 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 2 Pages 63-70
Keywords Animals; Central Nervous System/*growth & development; Female; *Learning; Male; *Predatory Behavior; Social Isolation; *Spiders
Abstract The purpose of this study was to determine the effects of early experience (rearing conditions) on the central nervous system (CNS) and behavior of spiderlings of Hogna carolinensis (Lycosidae). We were interested in whether or not spiderlings that were allowed to remain in contact with their maternal parent and siblings (enriched condition, EC) would exhibit differences in CNS development or subsequent behavior when compared with those reared in isolation (improverished condition, IC). Spiderlings emerged from their egg sacs and climbed onto the dorsal surface of their mother's abdomen where they remained until their yolk supply was depleted (5 days). They dispersed on day 6 after emergence. We compared the ability of 16-day-old EC and IC spiderlings to capture prey in a linear runway and to learn a complex maze (spatial learning). We also compared certain aspects of CNS development (brain weight, total number of brain cells, volume of central body and protocerebral neuropil) in EC and IC spiderlings. Results indicated that EC subjects are more efficient at capturing moving prey (crickets) and exhibited improved performance (significantly fewer blind alley errors) in the maze. The volume of the protocerebral neuropil in 6-day-old EC animals increased 30% over a 5-day period after emergence as compared to IC animals of the same age. The volume of the central body of EC animals increased 34.8% over the same time period. On day 6 after emergence, the weight of the protocerebrum was significantly greater in EC versus IC subjects. There were no significant effects of rearing condition (EC vs IC) or age (1- and 6-day-old spiderlings) on the total number of nerve cells in the protocerebrum, suggesting that the difference in protocerebral weight was due primarily to differences in supporting glial tissues and neuropil matrix. In conclusion, the data suggest that early contact with the maternal parent and siblings is of vital importance to CNS development in lycosid spiderlings and can influence the capacity for spatial learning as well as the ability to capture prey.
Address Box 5F-Dept. of Biology, University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606, USA. fpunzo@ut.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12150037 Approved no
Call Number Equine Behaviour @ team @ Serial 2607
Permanent link to this record
 

 
Author Fujita, K.; Kuroshima, H.; Masuda, T.
Title Do tufted capuchin monkeys (Cebus apella) spontaneously deceive opponents? A preliminary analysis of an experimental food-competition contest between monkeys Type Journal Article
Year (up) 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 1 Pages 19-25
Keywords Animals; Cebus/*psychology; *Competitive Behavior; *Deception; Dominance-Subordination; Feeding Behavior/*psychology; Female; Male; Predatory Behavior; Social Behavior
Abstract A new laboratory procedure which allows the study of deceptive behavior in nonhuman primates is described. Pairs of tufted capuchin monkeys faced each other in a food-competition contest. Two feeder boxes were placed between the monkeys. A piece of food was placed in one of the boxes. The subordinate individual was able to see the food and to open the box to obtain the bait. A dominant male was unable to see the food or to open the box but was able to take the food once the box was opened by the subordinate. In experiment 1, two of four subordinate monkeys spontaneously started to open the unbaited box first with increasing frequency. Experiment 2 confirmed that this “deceptive” act was not due to a drop in the rate of reinforcement caused by the usurping dominant male, under the situation in which food sometimes automatically dropped from the opened box. In experiment 3, two subordinate monkeys were rerun in the same situation as experiment 1. One of them showed some recovery of the “deceptive” act but the other did not; instead the latter tended to position himself on the side where there was no food before he started to open the box. Although the results do not clearly indicate spontaneous deception, we suggest that operationally defined spontaneous deceptive behaviors in monkeys can be analyzed with experimental procedures such as those used here.
Address Department of Psychology, Graduate School of Letters, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan. fujita@psy.bun.kyoto-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:11957398 Approved no
Call Number Equine Behaviour @ team @ Serial 2614
Permanent link to this record
 

 
Author Fenton, B.; Ratcliffe, J.
Title Animal behaviour: eavesdropping on bats Type Journal Article
Year (up) 2004 Publication Nature Abbreviated Journal Nature
Volume 429 Issue 6992 Pages 612-613
Keywords Acoustics; Animals; Chiroptera/anatomy & histology/classification/genetics/*physiology; Echolocation/*physiology; *Evolution; Phylogeny; Predatory Behavior/physiology; Species Specificity
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15190335 Approved no
Call Number refbase @ user @ Serial 500
Permanent link to this record
 

 
Author Jackson, R.R.; Li, D.
Title One-encounter search-image formation by araneophagic spiders Type Journal Article
Year (up) 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 4 Pages 247-254
Keywords Animals; Appetitive Behavior; *Association Learning; *Attention; Choice Behavior; Field Dependence-Independence; *Food Preferences; *Pattern Recognition, Visual; *Predatory Behavior; Signal Detection (Psychology); *Spiders
Abstract An experimental study of search-image use by araneophagic jumping spiders (i.e., salticid spiders that prey routinely on other spiders) supports five conclusions. First, araneophagic salticids have an innate predisposition to form search images for specific prey from their preferred prey category (spiders) rather than for prey from a non-preferred category (insects). Second, single encounters are sufficient for forming search images. Third, search images are based on selective attention specifically to optical cues. Fourth, there are trade-offs in attention during search-image use (i.e., forming a search image for one type of spider diminishes the araneophagic salticid's attention to other spiders). Fifth, the araneophagic salticid's adoption of search images is costly to the prey (i.e., when the araneophagic salticid adopts a search, the prey's prospects for surviving encounters with the araneophagic salticid are diminished). Cognitive and ecological implications of search-image use are discussed.
Address Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore. dbslidq@nus.edu.sg
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15118915 Approved no
Call Number Equine Behaviour @ team @ Serial 2524
Permanent link to this record
 

 
Author Palleroni, A.; Hauser, M.; Marler, P.
Title Do responses of galliform birds vary adaptively with predator size? Type Journal Article
Year (up) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 3 Pages 200-210
Keywords Adaptation, Psychological; Animals; *Avoidance Learning; *Behavior, Animal; Body Size; Chickens; Female; Food Chain; Male; *Pattern Recognition, Visual; *Predatory Behavior; *Recognition (Psychology); Risk Assessment
Abstract Past studies of galliform anti-predator behavior show that they discriminate between aerial and ground predators, producing distinctive, functionally referential vocalizations to each class. Within the category of aerial predators, however, studies using overhead models, video images and observations of natural encounters with birds of prey report little evidence that galliforms discriminate between different raptor species. This pattern suggests that the aerial alarm response may be triggered by general features of objects moving in the air. To test whether these birds are also sensitive to more detailed differences between raptor species, adult chickens with young were presented with variously sized trained raptors (small, intermediate, large) under controlled conditions. In response to the small hawk, there was a decline in anti-predator aggression and in aerial alarm calling as the young grew older and less vulnerable to attack by a hawk of this size. During the same developmental period, responses to the largest hawk, which posed the smallest threat to the young at all stages, did not change; there were intermediate changes at this time in response to the middle-sized hawk. Thus the anti-predator behavior of the adult birds varied in an adaptive fashion, changing as a function of both chick age and risk. We discuss these results in light of current issues concerning the cognitive mechanisms underlying alarm calling behavior in animals.
Address Primate Cognitive Neuroscience Laboratory, Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA, 02138, USA. aliparti@wjh.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15660209 Approved no
Call Number Equine Behaviour @ team @ Serial 2496
Permanent link to this record
 

 
Author Cole, P.D.; Adamo, S.A.
Title Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning Type Journal Article
Year (up) 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages 27-30
Keywords Animals; *Appetitive Behavior; *Association Learning; *Conditioning, Classical; Female; Male; *Mollusca; Photic Stimulation; *Predatory Behavior
Abstract Because most learning studies in cephalopods have been performed on octopods, it remains unclear whether such abilities are specific to octopus, or whether they correlate with having a larger and more centrally organized brain. To investigate associative learning in a different cephalopod, six sexually mature cuttlefish (Sepia officinalis) participated in a counterbalanced, within-subjects, appetitive, classical conditioning procedure. Two plastic spheres (conditioned stimuli, CSs), differing in brightness, were presented sequentially. Presentation of the CS+ was followed 5 s later by a live feeder fish (unconditioned stimulus, US). Cuttlefish began to attack the CS+ with the same type of food-acquisition seizures used to capture the feeder fish. After seven blocks of training (42 presentations of each CS) the difference in seizure probability between CS+ and CS- trials more than doubled; and was found to be significantly higher in late versus early blocks. These results indicate that cuttlefish exhibit autoshaping under some conditions. The possible ecological significance of this type of learning is briefly discussed.
Address Department of Psychology, Dalhousie University Halifax, Nova Scotia, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15592760 Approved no
Call Number Equine Behaviour @ team @ Serial 2500
Permanent link to this record
 

 
Author Arnold, K.; Zuberbuhler, K.
Title Language evolution: semantic combinations in primate calls Type Journal Article
Year (up) 2006 Publication Nature Abbreviated Journal Nature
Volume 441 Issue 7091 Pages 303
Keywords Animal Migration; Animals; Eagles/physiology; *Evolution; Female; Haplorhini/*physiology; Male; Predatory Behavior; *Semantics; *Vocalization, Animal
Abstract Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.
Address School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16710411 Approved no
Call Number refbase @ user @ Serial 354
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year (up) 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record