|   | 
Details
   web
Records
Author Waran, N.K.; Robertson, V.; Cuddeford, D.; Kokoszko, A.; Marlin, D.J.
Title Effects of transporting horses facing either forwards or backwards on their behaviour and heart rate Type Journal Article
Year 1996 Publication The Veterinary Record Abbreviated Journal Vet. Rec.
Volume (up) 139 Issue 1 Pages 7-11
Keywords Animals; *Behavior, Animal; Female; *Heart Rate; *Horses; Male; Posture/*physiology; *Transportation
Abstract The effects of transporting horses facing either forwards or backwards were compared by transporting six thoroughbred horses in pairs in a lorry on one journey facing in the direction of travel, and on another journey facing away from the direction of travel, over a standard one-hour route. Heart rate monitors were used to record their heart rate before, during and after the journey and the horses' behaviour was recorded by scan sampling each horse every other minute. The average heart rate was significantly lower (P < 0.05) when the horses were transported facing backwards, and they also tended to rest on their rumps more (P = 0.059). In the forward-facing position, the horses moved more frequently (P < 0.05) and tended to hold their necks in a higher than normal position and to vocalise more frequently (P = 0.059). During loading the average peak heart rate was 38 bpm lower (P < 0.05) when the horses were backed into the horse box for rear-facing transport than when they were loaded facing forwards. However, there was no difference between transport facing forwards or backwards in terms of the peak unloading heart rate, or the average heart rate during loading or unloading. The horses seemed to find being transported less physically stressful when they were facing backwards than when they were facing forwards.
Address Institute of Ecology and Resource Management, University of Edinburgh, School of Agriculture
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-4900 ISBN Medium
Area Expedition Conference
Notes PMID:8966985 Approved no
Call Number refbase @ user @ Serial 1938
Permanent link to this record
 

 
Author Kalin, N.H.; Shelton, S.E.
Title Nonhuman primate models to study anxiety, emotion regulation, and psychopathology Type Journal Article
Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume (up) 1008 Issue Pages 189-200
Keywords Affect/*physiology; Amygdala/blood supply; Animals; Anxiety/genetics/*psychology; Brain/*blood supply; Brain Stem/blood supply; Carrier Proteins/genetics; Electroencephalography; *Inhibition (Psychology); Macaca mulatta; Membrane Glycoproteins/genetics; *Membrane Transport Proteins; *Nerve Tissue Proteins; Prefrontal Cortex/blood supply; Serotonin Plasma Membrane Transport Proteins; Social Environment; Temperament; Tomography, Emission-Computed
Abstract This paper demonstrates that the rhesus monkey provides an excellent model to study mechanisms underlying human anxiety and fear and emotion regulation. In previous studies with rhesus monkeys, stable, brain, endocrine, and behavioral characteristics related to individual differences in anxiety were found. It was suggested that, when extreme, these features characterize an anxious endophenotype and that these findings in the monkey are particularly relevant to understanding adaptive and maladaptive anxiety responses in humans. The monkey model is also relevant to understanding the development of human psychopathology. For example, children with extremely inhibited temperament are at increased risk to develop anxiety disorders, and these children have behavioral and biological alterations that are similar to those described in the monkey anxious endophenotype. It is likely that different aspects of the anxious endophenotype are mediated by the interactions of limbic, brain stem, and cortical regions. To understand the brain mechanisms underlying adaptive anxiety responses and their physiological concomitants, a series of studies in monkeys lesioning components of the neural circuitry (amygdala, central nucleus of the amygdala and orbitofrontal cortex) hypothesized to play a role are currently being performed. Initial findings suggest that the central nucleus of the amygdala modulates the expression of behavioral inhibition, a key feature of the endophenotype. In preliminary FDG positron emission tomography (PET) studies, functional linkages were established between the amygdala and prefrontal cortical regions that are associated with the activation of anxiety.
Address Department of Psychiatry, University of Wisconsin-Madison Medical School, 6001 Research Park Boulevard, Madison, WI 53711, USA. nkalin@facstaff.wisc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:14998885 Approved no
Call Number Equine Behaviour @ team @ Serial 4133
Permanent link to this record