toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Isenbugel, E. openurl 
  Title [From wild horse to riding horse] Type Journal Article
  Year 2002 Publication Schweizer Archiv fur Tierheilkunde Abbreviated Journal Schweiz Arch Tierheilkd  
  Volume (down) 144 Issue 7 Pages 323-329  
  Keywords Animal Husbandry/*history; Animals; Animals, Domestic; Animals, Wild; *Bonding, Human-Pet; Breeding/history; Evolution; Female; History, 15th Century; History, 16th Century; History, 17th Century; History, 18th Century; History, 19th Century; History, 20th Century; History, Ancient; History, Medieval; *Horses/physiology/psychology; Humans; Male; Paintings; Predatory Behavior; Sculpture; Sports/history  
  Abstract Over 45 million years of evolution the horse developed to a highly specialized animal in anatomy, physiology and behavior. No other animal had influenced the economic and cultural history of men to such extent. Hunting prey since the ice age, domesticated 4000 B.C. and used for thousands of years as unique animal all over the world has attained a new role today as partner in sport, as companion animal and even as cotherapeutic. The well known behavioral demands in use and keeping are still often not fulfilled.  
  Address Zoologischer Garten Zurich  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title Vom Wildpferd zum Reitpferd  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-7281 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12174680 Approved no  
  Call Number refbase @ user @ Serial 1913  
Permanent link to this record
 

 
Author Christensen, J.W.; Rundgren, M. url  doi
openurl 
  Title Predator odour per se does not frighten domestic horses Type Journal Article
  Year 2008 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume (down) 112 Issue 1-2 Pages 136-145  
  Keywords Horse; Predator odour; Behaviour; Heart rate; Fear  
  Abstract Horses frequently react nervously when passing animal production farms and other places with distinctive smells, leading riders to believe that horses are innately frightened by certain odours. In three experiments, we investigated how horses respond to (1) urine from wolves and lions, (2) blood from slaughtered conspecifics and fur-derived wolf odour, and (3) a sudden auditory stimulus in either presence or absence of fur-derived wolf odour. The experiments were carried out under standardised conditions using a total of 45 naive, 2-year-old horses. In the first two experiments we found that horses showed significant changes in behaviour (Experiments 1 and 2: increased sniffing; Experiment 2 only: increased vigilance, decreased eating, and more behavioural shifts), but no increase in heart rate compared to controls when exposed to predator odours and conspecific blood in a known test environment. However, the third experiment showed that exposure to a combination of wolf odour and a sudden stimulus (sound of a moving plastic bag) caused significantly increased heart rate responses and a tendency to a longer latency to resume feeding, compared to control horses exposed to the sudden stimulus without the wolf odour. The results indicate that predator odour per se does not frighten horses but it may cause an increased level of vigilance. The presence of predator odour may, however, cause an increased heart rate response if horses are presented to an additional fear-eliciting stimulus. This strategy may be adaptive in the wild where equids share habitats with their predators, and have to trade-off time and energy spent on anti-predation responses against time allocated to essential non-defensive activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4339  
Permanent link to this record
 

 
Author Sovrano, V.A.; Rainoldi, C.; Bisazza, A.; Vallortigara, G. url  openurl
  Title Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish Type Journal Article
  Year 1999 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume (down) 106 Issue 1-2 Pages 175-180  
  Keywords Predator fixation; Fish; Left-eye preference  
  Abstract It has recently been reported that predator inspection is more likely to occur when a companion (i.e. the mirror image of the test animal) is visible on the left rather than on the right side of mosquitofish Gambusia holbrooki. This very unexpected outcome could be consistent with the hypothesis of a preferential use of the right eye during sustained fixation of a predator as well as of a preferential use of the left eye during fixation of conspecifics. We measured the time spent in monocular viewing during inspection of their own mirror images in females of six species of fish, belonging to different families--G. holbrooki, Xenotoca eiseni, Phoxinus phoxinus, Pterophyllum scalare, Xenopoecilus sarasinorum, and Trichogaster trichopterus. Results revealed a consistent left-eye preference during sustained fixation in all of the five species. Males of G. holbrooki, which do not normally show any social behaviour, did not exhibit any eye preferences during mirror-image inspection. We found, however, that they could be induced to manifest a left-eye preference, likewise females, if tested soon after capture, when some affiliative tendencies can be observed. These findings add to current evidence in a variety of vertebrate species for preferential involvement of structures located in the right side of the brain in response to the viewing of conspecifics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 614  
Permanent link to this record
 

 
Author Hirsch, B.T. doi  openurl
  Title Costs and benefits of within-group spatial position: a feeding competition model Type Journal Article
  Year 2007 Publication The Quarterly review of biology Abbreviated Journal Q Rev Biol  
  Volume (down) 82 Issue 1 Pages 9-27  
  Keywords Animals; Competitive Behavior/*physiology; Dominance-Subordination; Feeding Behavior/*physiology/*psychology; Population Dynamics; Predatory Behavior/*physiology  
  Abstract An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.  
  Address Department of Anthropology, Stony Brook University Stony Brook, New York 11794, USA. BTHIRSCH@IC.SUNYSB.EDU  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-5770 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17354992 Approved no  
  Call Number refbase @ user @ Serial 803  
Permanent link to this record
 

 
Author Griffin, A.S. doi  openurl
  Title Social learning in Indian mynahs, Acridotheres tristis: the role of distress calls Type Journal Article
  Year 2008 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume (down) 75 Issue 1 Pages 79-89  
  Keywords Acridotheres tristis; distress vocalizations; head saccades; Indian mynah; predator avoidance learning; social learning  
  Abstract Socially acquired predator avoidance is a phenomenon in which individuals acquire an avoidance response towards an initially neutral stimulus after they have experienced it together with the antipredator signals of social companions. Earlier research has established that alarm calls used for intraspecific communication are effective stimuli for triggering acquisition. However, animals produce a large range of other antipredator responses that might engage antipredator learning. Here, I examine the effects of conspecific distress calls, a signal that is produced by birds when restrained by a predator, and that appears to be directed towards predators, rather than conspecifics, on predator avoidance learning in Indian mynahs, Acridotheres tristis. Distress calls reflect high levels of alarm in the caller and should, therefore, mediate robust learning. Experiment 1 revealed that subjects performed higher rates of head movements in response to a previously unfamiliar avian mount after it had been presented simultaneously with playbacks of conspecific distress vocalizations. Experiment 2 revealed that increased rates of head saccades resembled the spontaneous response evoked by a novel stimulus more closely than it resembled the response evoked by a perched raptor, suggesting that distress calls inculcated a visual exploratory response, rather than an antipredator response. While it is usually thought that the level of acquisition in learners follows a simple relationship with the level of alarm shown by demonstrators, the present results suggest that this relationship may be more complex. Antipredator signals with different functions may have differential effects on learners.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4696  
Permanent link to this record
 

 
Author Shier, D.M.; Owings, D.H. url  doi
openurl 
  Title Effects of social learning on predator training and postrelease survival in juvenile black-tailed prairie dogs, Cynomys ludovicianus Type Journal Article
  Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume (down) 73 Issue 4 Pages 567-577  
  Keywords antipredator behaviour; black-tailed prairie dog; Cynomys ludovicianus; postrelease survival; predator avoidance; social learning  
  Abstract We examined how social context and experience affected development of antipredator behaviour and subsequent postrelease survival in the black-tailed prairie dog. Captive-reared juveniles were initially exposed to four stimulus animals: a ferret, a rattlesnake, a hawk and a cottontail control (pretraining tests). Subjects were then trained with or without an adult female demonstrator. Training involved exposure to each stimulus animal two to three times over 5 weeks. After training, each juvenile was retested with each stimulus animal (post-training tests). During pretraining tests, juveniles responded differentially to the stimulus animals. They were least active with the snake, fled the most in tests with the hawk, and were less vigilant with the ferret than with the snake. Following training, juveniles trained with experienced adults were more wary with all three predators than juveniles trained without an experienced adult present. We then compared the antipredator behaviour of captive-reared juveniles trained with experienced adult females with that of wild-reared juveniles of the same age. For all behavioural measures except shelter use, wild-experienced animals differentiated more strongly among predator types than did captive-trained juveniles. One year after reintroduction, survivorship of juveniles trained with experienced adults was higher than that of juveniles trained without experienced adults, but did not differ from that of wild-reared juveniles. These findings provide the first evidence that social transmission of antipredator behaviour during training can enhance long-term survival following release and that as long as a social training regime is used, predator avoidance training can emulate experience acquired in the wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4212  
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J. doi  openurl
  Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
  Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume (down) 67 Issue 3 Pages 165-176  
  Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology  
  Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.  
  Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16415571 Approved no  
  Call Number refbase @ user @ Serial 358  
Permanent link to this record
 

 
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G. openurl 
  Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
  Year 1995 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume (down) 45 Issue 1 Pages 54-61  
  Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity  
  Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7866771 Approved no  
  Call Number refbase @ user @ Serial 379  
Permanent link to this record
 

 
Author Gehring, T.M.; VerCauteren, K.C.; Provost, M.L.; Cellar, A.C. url  openurl
  Title Utility of livestock-protection dogs for deterring wildlife from cattle farms Type Journal Article
  Year 2010 Publication Wildl. Res. Abbreviated Journal Wildl. Res.  
  Volume (down) 37 Issue 8 Pages 715-721  
  Keywords bovine tuberculosis, coyote, grey wolf, livestock protection dog, mesopredators, white-tailed deer, wildlife damage management.  
  Abstract Context. Livestock producers worldwide are negatively affected by livestock losses because of predators and wildlife-transmitted diseases. In the western Great Lakes Region of the United States, this conflict has increased as grey wolf (Canis lupus) populations have recovered and white-tailed deer (Odocoileus virginianus) have served as a wildlife reservoir for bovine tuberculosis (Myobacterium bovis).Aims. We conducted field experiments on cattle farms to evaluate the effectiveness of livestock-protection dogs (LPDs) for excluding wolves, coyotes (C. latrans), white-tailed deer and mesopredators from livestock pastures.Methods. We integrated LPDs on six cattle farms (treatment) and monitored wildlife use with tracking swaths on these farms, concurrent with three control cattle farms during 2005-2008. The amount of time deer spent in livestock pastures was recorded using direct observation.Key results. Livestock pastures protected by LPDs had reduced use by these wildlife compared with control pastures not protected by LPDs. White-tailed deer spent less time in livestock pastures protected by LPDs compared with control pastures not protected by LPDs.Conclusions. Our research supports the theory that LPDs can be an effective management tool for reducing predation and disease transmission. We also demonstrate that LPDs are not limited to being used only with sheep and goats; they can also be used to protect cattle.Implications. On the basis of our findings, we support the use of LPDs as a proactive management tool that producers can implement to minimise the threat of livestock depredations and transmission of disease from wildlife to livestock. LPDs should be investigated further as a more general conservation tool for protecting valuable wildlife, such as ground-nesting birds, that use livestock pastures and are affected by predators that use these pastures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6575  
Permanent link to this record
 

 
Author Apfelbach, R.; Blanchard, C.D.; Blanchard, R.J.; Hayes, R.A.; McGregor, I.S. doi  openurl
  Title The effects of predator odors in mammalian prey species: A review of field and laboratory studies Type Journal Article
  Year 2005 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal  
  Volume (down) 29 Issue 8 Pages 1123-1144  
  Keywords Behavioral suppression; Defensive behavior; Endocrine effects; Neural effects; Predator odor; Small mammals  
  Abstract Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. © 2005 Elsevier Ltd. All rights reserved.  
  Address School of Psychology, University of Sydney, Sydney, NSW 2006, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4565  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print