|   | 
Details
   web
Records
Author Gallup, G.G.J.
Title On the rise and fall of self-conception in primates Type Journal Article
Year 1997 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume (down) 818 Issue Pages 72-82
Keywords Animals; Phylogeny; Primates/*psychology; *Self Concept
Abstract
Address Department of Psychology, State University of New York at Albany 12222, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:9237466 Approved no
Call Number Equine Behaviour @ team @ Serial 4134
Permanent link to this record
 

 
Author Fenton, B.; Ratcliffe, J.
Title Animal behaviour: eavesdropping on bats Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume (down) 429 Issue 6992 Pages 612-613
Keywords Acoustics; Animals; Chiroptera/anatomy & histology/classification/genetics/*physiology; Echolocation/*physiology; *Evolution; Phylogeny; Predatory Behavior/physiology; Species Specificity
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15190335 Approved no
Call Number refbase @ user @ Serial 500
Permanent link to this record
 

 
Author Novacek, M.J.
Title Mammalian phylogeny: shaking the tree Type Journal Article
Year 1992 Publication Nature Abbreviated Journal Nature
Volume (down) 356 Issue 6365 Pages 121-125
Keywords Animals; Evolution; Fossils; Mammals/classification/*genetics; *Phylogeny
Abstract Recent palaeontological discoveries and the correspondence between molecular and morphological results provide fresh insight on the deep structure of mammalian phylogeny. This new wave of research, however, has yet to resolve some important issues.
Address American Museum of Natural History, New York 10024
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:1545862 Approved no
Call Number Equine Behaviour @ team @ Serial 3546
Permanent link to this record
 

 
Author Macfadden, B.J.
Title Evolution. Fossil horses--evidence for evolution Type Journal Article
Year 2005 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume (down) 307 Issue 5716 Pages 1728-1730
Keywords Animals; Body Size; DNA, Mitochondrial; Diet; *Equidae/anatomy & histology/classification/genetics; *Evolution; Feeding Behavior; *Fossils; *Horses/anatomy & histology/classification/genetics; Paleodontology; Phylogeny; Time; Tooth/anatomy & histology
Abstract
Address Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. bmacfadd@flmnh.ufl.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-9203 ISBN Medium
Area Expedition Conference
Notes PMID:15774746 Approved no
Call Number Serial 1892
Permanent link to this record
 

 
Author Cilnis, M.J.; Kang, W.; Weaver, S.C.
Title Genetic conservation of Highlands J viruses Type Journal Article
Year 1996 Publication Virology Abbreviated Journal Virology
Volume (down) 218 Issue 2 Pages 343-351
Keywords Alphavirus/*genetics; Alphavirus Infections/transmission/veterinary/virology; Amino Acid Sequence; Animals; Base Sequence; Conserved Sequence; Disease Outbreaks; Encephalitis, Viral/veterinary/virology; *Evolution, Molecular; Horses; Molecular Sequence Data; Phylogeny; RNA, Viral/genetics; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Nucleic Acid; Turkeys; Variation (Genetics)/*genetics
Abstract We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.
Address Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-6822 ISBN Medium
Area Expedition Conference
Notes PMID:8610461 Approved no
Call Number Equine Behaviour @ team @ Serial 2657
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume (down) 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Jansen, T.; Forster, P.; Levine, M.A.; Oelke, H.; Hurles, M.; Renfrew, C.; Weber, J.; Olek, K.
Title Mitochondrial DNA and the origins of the domestic horse Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume (down) 99 Issue 16 Pages 10905-10910
Keywords Animals; Animals, Domestic/classification/*genetics; Base Sequence; DNA, Complementary; *DNA, Mitochondrial; *Evolution, Molecular; Horses/classification/*genetics; Molecular Sequence Data; Phylogeny
Abstract The place and date of the domestication of the horse has long been a matter for debate among archaeologists. To determine whether horses were domesticated from one or several ancestral horse populations, we sequenced the mitochondrial D-loop for 318 horses from 25 oriental and European breeds, including American mustangs. Adding these sequences to previously published data, the total comes to 652, the largest currently available database. From these sequences, a phylogenetic network was constructed that showed that most of the 93 different mitochondrial (mt)DNA types grouped into 17 distinct phylogenetic clusters. Several of the clusters correspond to breeds and/or geographic areas, notably cluster A2, which is specific to Przewalski's horses, cluster C1, which is distinctive for northern European ponies, and cluster D1, which is well represented in Iberian and northwest African breeds. A consideration of the horse mtDNA mutation rate together with the archaeological timeframe for domestication requires at least 77 successfully breeding mares recruited from the wild. The extensive genetic diversity of these 77 ancestral mares leads us to conclude that several distinct horse populations were involved in the domestication of the horse.
Address Biopsytec Analytik GmbH, Marie-Curie-Strasse 1, 53359 Rheinbach, Germany. jansen@biopsytec.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12130666 Approved no
Call Number refbase @ user @ Serial 772
Permanent link to this record
 

 
Author Hauser, M.D.; Kralik, J.; Botto-Mahan, C.; Garrett, M.; Oser, J.
Title Self-recognition in primates: phylogeny and the salience of species-typical features Type Journal Article
Year 1995 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume (down) 92 Issue 23 Pages 10811-10814
Keywords Animals; *Behavior, Animal; *Cognition; Discrimination (Psychology); Exploratory Behavior; Female; Hair Color; Male; Phylogeny; Psychology, Comparative; Research Design; Saguinus/*psychology; *Self Concept; Species Specificity; Touch; *Visual Perception
Abstract Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.
Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:7479889 Approved no
Call Number Equine Behaviour @ team @ Serial 2825
Permanent link to this record
 

 
Author Dugatkin, L.A.
Title Animal cooperation among unrelated individuals Type Journal Article
Year 2002 Publication Die Naturwissenschaften Abbreviated Journal Naturwissenschaften
Volume (down) 89 Issue 12 Pages 533-541
Keywords Animals; Phylogeny; *Social Behavior; Species Specificity
Abstract The evolution of cooperation has long been a topic near and dear to the hearts of behavioral and evolutionary ecologists. Cooperative behaviors run the gamut from fairly simple to very complicated and there are a myriad of ways to study cooperation. Here I shall focus on three paths that have been delineated in the study of intraspecific cooperation among unrelated individuals: reciprocity, byproduct mutualism, and group selection. In each case, I attempt to delineate the theory underlying each of these paths and then provide examples from the empirical literature. In addition, I shall briefly touch upon some recent work that has attempted to examine (or re-examine) the role of cognition and phylogeny in the study of cooperative behavior. While empirical and theoretical work has made significant strides in the name of better understanding the evolution and maintenance of cooperative behavior in animals, much work remains for the future. “From the point of view of the moralist, the animal world is on about the same level as the gladiator's show. The creatures are fairly well treated, and set to fight; whereby the strongest, the swiftest and the cunningest live to fight another day. The spectator has no need to turn his thumb down, as no quarter is given em leader the weakest and the stupidest went to the wall, while the toughest and the shrewdest, those who were best fitted to cope with their circumstances, but not the best in any other way, survived. Life was a continuous free fight, and em leader a war of each against all was the normal state of existence.” (Huxley 1888)
Address Department of Biology, University of Louisville, Louisville, KY 40292, USA. lee.dugatkin@louisville.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-1042 ISBN Medium
Area Expedition Conference
Notes PMID:12536274 Approved no
Call Number Equine Behaviour @ team @ Serial 2797
Permanent link to this record
 

 
Author Linklater, W.L.
Title Adaptive explanation in socio-ecology: lessons from the Equidae Type Journal Article
Year 2000 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal Biol. Rev.
Volume (down) 75 Issue 1 Pages 1-20
Keywords *Adaptation, Physiological; Animals; Ecology; Equidae/*physiology; Female; Male; Phylogeny
Abstract Socio-ecological explanations for intra- and interspecific variation in the social and spatial organization of animals predominate in the scientific literature. The socio-ecological model, developed first for the Bovidae and Cervidae, is commonly applied more widely to other groups including the Equidae. Intraspecific comparisons are particularly valuable because they allow the role of environment and demography on social and spatial organization to be understood while controlling for phylogeny or morphology which confound interspecific comparisons. Feral horse (Equus caballus Linnaeus 1758) populations with different demography inhabit a range of environments throughout the world. I use 56 reports to obtain 23 measures or characteristics of the behaviour and the social and spatial organization of 19 feral horse populations in which the environment, demography, management, research effort and sample size are also described. Comparison shows that different populations had remarkably similar social and spatial organization and that group sizes and composition, and home range sizes varied as much within as between populations. I assess the few exceptions to uniformity and conclude that they are due to the attributes of the studies themselves, particularly to poor definition of terms and inadequate empiricism, rather than to the environment or demography per se. Interspecific comparisons show that equid species adhere to their different social and spatial organizations despite similarities in their environments and even when species are sympatric. Furthermore, equid male territoriality has been ill-defined in previous studies, observations presented as evidence of territoriality are also found in non-territorial equids, and populations of supposedly territorial species demonstrate female defence polygyny. Thus, territoriality may not be a useful categorization in the Equidae. Moreover, although equid socio-ecologists have relied on the socio-ecological model derived from the extremely diverse Bovidae and Cervidae for explanations of variation in equine society, the homomorphic, but large and polygynous, and monogeneric Equidae do not support previous socio-ecological explanations for relationships between body size, mating system and sexual dimorphism in ungulates. Consequently, in spite of the efforts of numerous authors during the past two decades, functional explanations of apparent differences in feral horse and equid social and spatial organization and behaviour based on assumptions of their current utility in the environmental or demographic context remain unconvincing. Nevertheless, differences in social cohesion between species that are insensitive to intra- and interspecific variation in habitat and predation pressure warrant explanation. Thus, I propose alternative avenues of inquiry including testing for species-specific differences in inter-individual aggression and investigating the role of phylogenetic constraints in equine society. The Equidae are evidence of the relative importance of phylogeny and biological structure, and unimportance of the present-day environment, in animal behaviour and social and spatial organization.
Address Institute of Natural Resources, Massey University, Palmerston North, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1464-7931 ISBN Medium
Area Expedition Conference
Notes PMID:10740891 Approved no
Call Number Serial 2024
Permanent link to this record