toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Cerutti, D.T.; Staddon, J.E.R. doi  openurl
  Title Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis Type Journal Article
  Year 2004 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 30 Issue 1 Pages 45-57  
  Keywords Animals; Choice Behavior/*physiology; Cognition/*physiology; Columbidae; Male; Models, Psychological; Psychological Theory; *Reinforcement (Psychology); *Reinforcement Schedule; Time Perception/*physiology  
  Abstract In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.  
  Address Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708-1050, USA. cerutti@psych.duke.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14709114 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2768  
Permanent link to this record
 

 
Author Zentall, T.R. doi  openurl
  Title Mental time travel in animals: a challenging question Type Journal Article
  Year 2006 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 72 Issue 2 Pages 173-183  
  Keywords Animals; *Behavior, Animal; Columbidae; Concept Formation; Conditioning, Operant; *Imagination; *Memory; Mental Recall; Planning Techniques; Rats; *Time Perception; Transfer (Psychology)  
  Abstract Humans have the ability to mentally recreate past events (using episodic memory) and imagine future events (by planning). The best evidence for such mental time travel is personal and thus subjective. For this reason, it is particularly difficult to study such behavior in animals. There is some indirect evidence, however, that animals have both episodic memory and the ability to plan for the future. When unexpectedly asked to do so, animals can report about their recent past experiences (episodic memory) and they also appear to be able to use the anticipation of a future event as the basis for a present action (planning). Thus, the ability to imagine past and future events may not be uniquely human.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16466863 Approved no  
  Call Number refbase @ user @ Serial 218  
Permanent link to this record
 

 
Author Zentall, T.R. doi  openurl
  Title Timing, memory for intervals, and memory for untimed stimuli: the role of instructional ambiguity Type Journal Article
  Year 2005 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 70 Issue 3 Pages 209-222  
  Keywords Animals; *Attention; Columbidae; *Discrimination Learning; *Memory, Short-Term; Practice (Psychology); Reinforcement Schedule; *Retention (Psychology); *Time Perception  
  Abstract Theories of animal timing have had to account for findings that the memory for the duration of a timed interval appears to be dramatically shorted within a short time of its termination. This finding has led to the subjective shortening hypothesis and it has been proposed to account for the poor memory that animals appear to have for the initial portion of a timed interval when a gap is inserted in the to-be-timed signal. It has also been proposed to account for the poor memory for a relatively long interval that has been discriminated from a shorter interval. I suggest here a simpler account in which ambiguity between the gap or retention interval and the intertrial interval results in resetting the clock, rather than forgetting the interval. The ambiguity hypothesis, together with a signal salience mechanism that determines how quickly the clock is reset at the start of the intertrial interval can account for the results of the reported timing experiments that have used the peak procedure. Furthermore, instructional ambiguity rather than memory loss may account for the results of many animal memory experiments that do not involve memory for time.  
  Address Department of Psychology, University of Kentucky, 202B Kastle Hall, Lexington, KY 40506-0044, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16095851 Approved no  
  Call Number refbase @ user @ Serial 222  
Permanent link to this record
 

 
Author Friedrich, A.M.; Zentall, T.R. doi  openurl
  Title Pigeons shift their preference toward locations of food that take more effort to obtain Type Journal Article
  Year 2004 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 67 Issue 3 Pages 405-415  
  Keywords Animals; *Behavior, Animal; *Choice Behavior; Columbidae; *Exertion; *Feeding Behavior; Reward  
  Abstract Although animals typically prefer to exert less effort rather than more effort to obtain food, the present research shows that requiring greater effort to obtain food at a particular location appears to increase the value of that location. In Experiment 1, pigeons' initial preference for one feeder was significantly reduced by requiring 1 peck to obtain food from that feeder and requiring 30 pecks to obtain food from the other feeder. In Experiment 2, a similar decrease in preference was not found when pigeons received reinforcement from both feeders independently of the amount of effort required. These results are consistent with the within-trial contrast effect proposed by in which the relative hedonic value of a reward depends on the state of the animal immediately prior to the reward. The greater the improvement from that prior state the greater the value of the reinforcer.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15518990 Approved no  
  Call Number refbase @ user @ Serial 227  
Permanent link to this record
 

 
Author Friedrich, A.M.; Clement, T.S.; Zentall, T.R. doi  openurl
  Title Functional equivalence in pigeons involving a four-member class Type Journal Article
  Year 2004 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 67 Issue 3 Pages 395-403  
  Keywords Animals; *Association Learning; *Behavior, Animal; *Cognition; Columbidae; *Concept Formation  
  Abstract Research suggests that animals are capable of forming functional equivalence relations or stimulus classes of the kind usually demonstrated by humans (e.g., the class defined by an object and the word for that object). In pigeons, such functional equivalences are typically established using many-to-one matching-to-sample in which two samples are associated with one comparison stimulus and two different samples are associated with the other. Evidence for the establishment of functional equivalences between samples associated with the same comparison comes from transfer tests. In Experiment 1, we found that pigeons can form a single class consisting of four members (many-to-one matching) when the alternative class has only one member (one-to-one matching). In Experiment 2, we ruled out the possibility that the pigeons acquired the hybrid one-to-one/many-to-one task by developing a single-code/default coding strategy as earlier research suggested that it might. Thus, pigeons can develop a functional class consisting of as many as four members, with the alternative class consisting of a single member.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15518989 Approved no  
  Call Number refbase @ user @ Serial 228  
Permanent link to this record
 

 
Author Petruso, E.J.; Fuchs, T.; Bingman, V.P. doi  openurl
  Title Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 181-188  
  Keywords Animals; Circadian Rhythm; Columbidae/*physiology; Homing Behavior/physiology; Learning/*physiology; *Light; Orientation/*physiology; Space Perception/*physiology; Time Perception/*physiology  
  Abstract Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.  
  Address Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University, Bowling Green, OH 43403, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17160343 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2432  
Permanent link to this record
 

 
Author Watanabe, S.; Troje, N.F. doi  openurl
  Title Towards a “virtual pigeon”: a new technique for investigating avian social perception Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 271-279  
  Keywords Animals; Behavioral Research/instrumentation/methods; Columbidae/*physiology; Computer Graphics; *Computer Simulation; Discrimination Learning/*physiology; Generalization (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Perceptual Masking/physiology; Rats; Recognition (Psychology)/physiology; *Social Behavior; User-Computer Interface  
  Abstract The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.  
  Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108, Japan. swat@flet.keio.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17024508 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2437  
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E. doi  openurl
  Title The logic of the stimulus Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 247-256  
  Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity  
  Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.  
  Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2450  
Permanent link to this record
 

 
Author Martin, T.I.; Zentall, T.R. doi  openurl
  Title Post-choice information processing by pigeons Type Journal Article
  Year 2005 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 4 Pages 273-278  
  Keywords Animals; *Behavior, Animal; *Choice Behavior; *Columbidae; Discrimination Learning  
  Abstract In a conditional discrimination (matching-to-sample), a sample is followed by two comparison stimuli, one of which is correct, depending on the sample. Evidence from previous research suggests that if the stimulus display is maintained following an incorrect response (the so-called penalty-time procedure), acquisition by pigeons is facilitated. The present research tested the hypothesis that the penalty-time procedure allows the pigeons to review and learn from the maintained stimulus display following an incorrect choice. It did so by including a penalty-time group for which, following an incorrect choice, the sample changed to match the incorrect comparison, thus providing the pigeons with post-choice 'misinformation.' This misinformation group acquired the matching task significantly slower than the standard penalty-time group (that had no change in the sample following an error). Furthermore, acquisition of matching by a control group that received no penalty time fell midway between the other two groups, suggesting that the pigeons did not merely take more care in making choices because of the aversiveness of penalty-time. Thus, it appears that in the acquisition of matching-to-sample, when the stimulus display is maintained following an incorrect choice, the pigeons can review or acquire information from the display. This is the first time that such an effect has been reported for a nonhuman species.  
  Address Department of Psychology, University of Kentucky, Lexington, KY 40506, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15744507 Approved no  
  Call Number refbase @ user @ Serial 225  
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G. doi  openurl
  Title Integration of spatial maps in pigeons Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 7-16  
  Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology  
  Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.  
  Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15221636 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2521  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print