toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lingle, S.; Rendall, D.; Pellis, S.M. url  doi
openurl 
  Title Altruism and recognition in the antipredator defence of deer: 1. Species and individual variation in fawn distress calls Type (up) Journal Article
  Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 73 Issue 5 Pages 897-905  
  Keywords acoustic signals; aggressive defence; altruism; cooperation; mule deer; Odocoileus hemionus; Odocoileus virginianus; olfactory cues; recognition error; white-tailed deer  
  Abstract Mule deer, Odocoileus hemionus, females actively defend fawns against predators, including nonoffspring conspecific fawns and heterospecific white-tailed deer, O. virginianus, fawns. We hypothesized that the defence of nonoffspring fawns was due to a recognition error. During a predator attack, females may have to decide whether to defend a fawn with imperfect information on its identity obtained from hearing only a few distress calls. We examined fawn distress calls to determine whether calls made by the two species and by different individuals within each species were acoustically distinctive. The mean and maximum fundamental frequencies of mule deer fawns were nearly double those of white-tailed deer fawns, with no overlap, enabling us to classify 100% of calls to the correct species using a single trait. A large proportion of calls was also assigned to the correct individual using a multivariate analysis (66% and 70% of mule deer and white-tailed deer fawns, respectively, chance = 6% and 10%); however, there was considerable statistical uncertainty in the probability of correct classification. We observed fawns approach conspecific females in an attempt to nurse; females probed most offspring fawns with their noses before accepting them, and always probed nonoffspring fawns before rejecting them, suggesting that close contact and olfactory information were needed to unequivocally distinguish nonoffspring from offspring fawns. Taken together, these results suggest that acoustic variation alone would probably be sufficient to permit rapid and reliable species discrimination, but it may not be sufficient for mothers to unequivocally distinguish their own fawn from conspecific fawns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4210  
Permanent link to this record
 

 
Author Lingle, S.; Rendall, D.; Wilson, W.F.; DeYoung, R.W.; Pellis, S.M. url  doi
openurl 
  Title Altruism and recognition in the antipredator defence of deer: 2. Why mule deer help nonoffspring fawns Type (up) Journal Article
  Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 73 Issue 5 Pages 907-916  
  Keywords aggressive defence; altruism; behavioural discrimination; cooperation; motivational constraint; mule deer; Odocoileus hemionus; Odocoileus virginianus; recognition error; white-tailed deer  
  Abstract Both white-tailed deer, Odocoileus virginianus, and mule deer, O. hemionus, females defend fawns against coyotes, Canis latrans, but only mule deer defend nonoffspring conspecific and heterospecific fawns. During a predator attack, females may have to decide whether to defend a fawn while having imperfect information on its identity obtained from hearing a few distress calls. Although imperfect recognition can influence altruistic behaviour, few empirical studies have considered this point when testing functional explanations for altruism. We designed a series of playback experiments with fawn distress calls to test alternative hypotheses (by-product of parental care, kin selection, reciprocal altruism) for the mule deer's defence of nonoffspring, specifically allowing for the possibility that females mistake these fawns for their own. White-tailed deer females approached the speaker only when distress calls of white-tailed deer fawns were played and when their own fawn was hidden, suggesting that fawn defence was strictly a matter of parental care in this species. In contrast, mule deer females responded similarly and strongly, regardless of the caller's identity, the female's reproductive state (mother or nonmother) or the presence of their own offspring. The failure of mule deer females to adjust their responses to these conditions suggests that they do not defend nonoffspring because they mistake them for their own fawns. The lack of behavioural discrimination also suggests that kin selection, reciprocal altruism and defence of the offspring's area are unlikely to explain the mule deer's defence of nonoffspring. We identify causal and functional questions that still need to be addressed to understand why mule deer defend fawns so indiscriminately.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4211  
Permanent link to this record
 

 
Author Sovrano, V.; Bisazza, A. url  doi
openurl 
  Title Recognition of partly occluded objects by fish Type (up) Journal Article
  Year 2008 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 11 Issue 1 Pages 1435-9448  
  Keywords Visual completion – Amodal completion – Occlusion – Visual recognition – Fish  
  Abstract Abstract  The ability to visually complete partly occluded objects (so-called `“amodal completion”) has been documented in mammals and birds. Here, we report the first evidence of such a perceptual ability in a fish species. Fish (Xenotoca eiseni) were trained to discriminate between a complete and an amputated disk. Thereafter, the fish performed test trials in which hexagonal polygons were either exactly juxtaposed or only placed close to the missing sectors of the disk in order to produce or not produce the impression (to a human observer) of an occlusion of the missing sectors of the disk by the polygon. In another experiment, fish were first trained to discriminate between hexagonal polygons that were either exactly juxtaposed or only placed close to the missing sectors of a disk, and then tested for choice between a complete and an amputated disk. In both experiments, fish behaved as if they were experiencing visual completion of the partly occluded stimuli. These findings suggest that the ability to visually complete partly occluded objects may be widespread among vertebrates, possibly inherited in mammals, birds and fish from early vertebrate ancestors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4217  
Permanent link to this record
 

 
Author Bates, L.A.; Sayialel, K.N.; Njiraini, N.W.; Poole, J.H.; Moss, C.J.; Byrne, R.W. doi  openurl
  Title African elephants have expectations about the locations of out-of-sight family members Type (up) Journal Article
  Year 2008 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume 4 Issue 1 Pages 34-36  
  Keywords elephants, olfaction, urine, individual recognition  
  Abstract Monitoring the location of conspecifics may be important to social mammals. Here, we use an expectancy-violation paradigm to test the ability of African elephants (Loxodonta africana) to keep track of their social companions from olfactory cues. We presented elephants with samples of earth mixed with urine from female conspecifics that were either kin or unrelated to them, and either unexpected or highly predictable at that location. From behavioural measurements of the elephants' reactions, we show that African elephants can recognize up to 17 females and possibly up to 30 family members from cues present in the urine-earth mix, and that they keep track of the location of these individuals in relation to themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Equine Behaviour @ team @ Serial 4332  
Permanent link to this record
 

 
Author Brennan, P.A.; Kendrick, K.M. doi  openurl
  Title Mammalian social odours: attraction and individual recognition Type (up) Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2061-2078  
  Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal  
  Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4334  
Permanent link to this record
 

 
Author Penn, D.; Potts, W.K. url  doi
openurl 
  Title Untrained mice discriminate MHC-determined odors Type (up) Journal Article
  Year 1998 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.  
  Volume 64 Issue 3 Pages 235-243  
  Keywords Major histocompatibility complex; Pheromones; Olfaction; Kin recognition; Sexual selection  
  Abstract PENN, D. AND W. K. POTTS. Untrained mice distinguish MHC-determined odors. PHYSIOL BEHAV 64(3) 235-243, 1998.--Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4418  
Permanent link to this record
 

 
Author Drummond, H. doi  openurl
  Title Dominance in vertebrate broods and litters Type (up) Journal Article
  Year 2006 Publication Quarterly Review of Biology Abbreviated Journal  
  Volume 81 Issue 1 Pages 3-32  
  Keywords Aggression; Assessment; Dominance; Individual recognition; Sibling conflict; Trained losing  
  Abstract Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as “aggression-submission,” “aggression-resistance, ” “aggression-aggression,” “aggression-avoidance,” “rotating dominance,” and “flock dominance.” These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the “site-specific dominance” (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. Copyright © 2006 by The University of Chicago. All rights reserved.  
  Address Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, 04510 D.F., Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 20; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4559  
Permanent link to this record
 

 
Author Nakagawa, S.; Waas, J.R. url  doi
openurl 
  Title 'O sibling, where art thou?' – A review of avian sibling recognition with respect to the mammalian literature Type (up) Journal Article
  Year 2004 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal  
  Volume 79 Issue 1 Pages 101-119  
  Keywords Birds; Direct familiarisation; Indirect familiarisation; Individual recognition; Kin discrimination; Kin recognition; Mammals; Sibling recognition  
  Abstract Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where 'mixing potential' of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through 'direct familiarisation' (commonly known as associative learning or familiarity); future experiments should also incorporate tests for 'indirect familiarisation' (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic.  
  Address Department of Biological Sciences, University Waikato, Private Bag 3105, Hamilton, New Zealand  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 9; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4567  
Permanent link to this record
 

 
Author Arakawa, H.; Arakawa, K.; Blanchard, D.C.; Blanchard, R.J. url  doi
openurl 
  Title A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice Type (up) Journal Article
  Year 2008 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 190 Issue 1 Pages 97-104  
  Keywords Social recognition; Urine marking; Familiarity; Context recognition; C57BL/6J mice  
  Abstract Olfaction is a major sensory element in intraspecies recognition and communication in mice. The present study investigated scent marking behaviors of males of the highly inbred C57BL/6J (C57) strain in order to evaluate the ability of these behaviors to provide clear and consistent measures of social familiarity and response to social signals. C57 males engage in scent marking when placed in a chamber with a wire mesh partition separating them from a conspecific. Male mice (C57 or outbred CD-1 mice) showed rapid habituation of scent marking (decreased marking over trials) with repeated exposure at 24-h intervals, to a stimulus animal of the C57 or CD-1 strains, or to an empty chamber. Subsequent exposure to a genetically different novel mouse (CD-1 after CD-1 exposure, or CD-1 after C57 exposure) or to a novel context (different shaped chamber) produced recovery of marking, while responses to a novel but genetically identical mouse (C57 after C57 exposure) or to the empty chamber did not. This finding demonstrated that male mice differentiate familiar and novel conspecifics as expressed by habituation and recovery of scent marking, but neither C57 or CD-1 mice can differentiate new vs. familiar C57 males; likely due to similarities in their odor patterns. The data also indicate that scent marking can differentiate novel from familiar contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4639  
Permanent link to this record
 

 
Author Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. url  doi
openurl 
  Title Social intelligence in the spotted hyena (Crocuta crocuta) Type (up) Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 523-538  
  Keywords Anatomy, Comparative; Animals; Brain/*anatomy & histology; Cercopithecinae/anatomy & histology/*physiology; Decision Making/physiology; Hyaenidae/anatomy & histology/*physiology; *Intelligence; *Recognition (Psychology); *Social Behavior; Species Specificity  
  Abstract If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.  
  Address Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. holekamp@msu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17289649 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4719  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print