toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jolly, A. openurl 
  Title Pair-bonding, female aggression and the evolution of lemur societies Type (up) Journal Article
  Year 1998 Publication Folia Primatologica; International Journal of Primatology Abbreviated Journal Folia Primatol (Basel)  
  Volume 69 Suppl 1 Issue Pages 1-13  
  Keywords *Aggression; Animals; Evolution; Female; Intelligence; Lemur/*psychology; Male; *Pair Bond; Sex Factors; Social Dominance; Strepsirhini/psychology  
  Abstract Lemur societies have been described as convergent with those of anthropoids, including Papio-like female-bonded multi-male groups. Recent research, however, shows at least 5 pair-bonded species among the Lemuridae and Indriidae. Three more, Eulemur mongoz, Eulemur fulvus and Varecia variegata, have societies combining aspects of pairing with aspects of troop life. The best-known female-bonded societies, those of Lemur catta, Propithecus diadema edwardsi and Propithecus verreauxi, may be assemblages of mother-daughter dyads, capable of high aggression towards other females, but derived from more solitary female ancestors, perhaps also living as pairs. The internal structure of such lemur groups differs from the more extensive kin groups of catarrhines. This in turn may relate to the lemurs' level of social intelligence and to lemur female dominance over males.  
  Address Department of Ecology and Evolutionary Biology, Princeton University, N.J. 08544, USA. ajolly@princeton.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-5713 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9595685 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4179  
Permanent link to this record
 

 
Author Boyd, R.; Richerson, P.J. url  openurl
  Title Why Culture is Common, but Cultural Evolution is Rare Type (up) Journal Article
  Year 1996 Publication Proceedings of the British Academy Abbreviated Journal Proc Br Acad  
  Volume 88 Issue Pages 73-93  
  Keywords cultural distributed evolution primates  
  Abstract If culture is defined as variation acquired and maintained by social learning, then culture is common in nature. However, cumulative cultural evolution resulting in behaviors that no individual could invent on their own is limited to humans, song birds, and perhaps chimpanzees. Circumstantial evidence suggests that cumulative cultural evolution requires the capacity for observational learning. Here, we analyze two models the evolution of psychological capacities that allow cumulative cultural evolution. Both models suggest that the conditions which allow the evolution of such capacities when rare are much more stringent than the conditions which allow the maintenance of the capacities when common. This result follows from the fact that the assumed benefit of the capacities, cumulative cultural adaptation, cannot occur when the capacities are rare. These results suggest why such capacities may be rare in nature.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society/British Academy Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes http://www.proc.britac.ac.uk/cgi-bin/somsid.cgi?page=summaries/pba88#boyd Approved no  
  Call Number Equine Behaviour @ team @ Serial 4195  
Permanent link to this record
 

 
Author Rogers, A.R. url  doi
openurl 
  Title Does Biology Constrain Culture? Type (up) Journal Article
  Year 1988 Publication American Anthropologist Abbreviated Journal Am Anthropol  
  Volume 90 Issue 4 Pages 819-831  
  Keywords models, learning, evolution, culture, fitness, adaptive, environment, human, natural selection, behavior  
  Abstract Most social scientists would agree that the capacity for human culture was probably fashioned by natural selection, but they disagree about the implications of this supposition. Some believe that natural selection imposes important constraints on the ways in which culture can vary, while others believe that any such constraints must be negligible. This article employs a “thought experiment” to demonstrate that neither of these positions can be justified by appeal to general properties of culture or of evolution. Natural selection can produce mechanisms of cultural transmission that are neither adaptive nor consistent with the predictions of acultural evolutionary models (those ignoring cultural evolution). On the other hand, natural selection can also produce mechanisms of cultural transmission that are highly consistent with acultural models. Thus, neither side of the sociobiology debate is justified in dismissing the arguments of the other. Natural selection may impose significant constraints on some human behaviors, but negligible constraints on others. Models of simultaneous genetic/cultural evolution will be useful in identifying domains in which acultural evolutionary models are, and are not, likely to be useful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ citeulike:907484 Serial 4199  
Permanent link to this record
 

 
Author Müller, A. E.; Thalmann, U. url  openurl
  Title Origin and evolution of primate social organisation: a reconstruction Type (up) Journal Article
  Year 2000 Publication Biological Reviews Abbreviated Journal  
  Volume 75 Issue Pages 405-435  
  Keywords social organisation; evolution; ancestral primate; strepsirhines; nocturnal prosimians; lemurs; lorisiforms; dispersed multi-male system; promiscuity.  
  Abstract Abstract

The evolution and origin of primate social organisation has attracted the attention of many researchers, and a solitary pattern, believed to be present in most nocturnal prosimians, has been generally considered as the most primitive system. Nocturnal prosimians are in fact mostly seen alone during their nightly activities and therefore termed “solitary foragers”, but that does not mean that they are not social. Moreover, designating their social organisation as “solitary”, implies that their way of life is uniform in all species. It has, however, emerged over the last decades that all of them exhibit not only some kind of social network but also that those networks differ among species. There is a need to classify these social networks in the same manner as with group-living (gregarious) animals if we wish to link up the different forms of primate social organisation with ecological, morphological or phylogenetic variables. In this review, we establish a basic classification based on spatial relations and sociality in order to describe and cope properly with the social organisation patterns of the different species of nocturnal prosimians and other mammals that do not forage in cohesive groups. In attempting to trace the ancestral pattern of primate social organisation, the Malagasy mouse and dwarf lemurs and the Afro-Asian bushbabies and lorises are of special interest because they are thought to approach the ancestral conditions most closely. These species have generally been believed to exhibit a dispersed harem system as their pattern of social organisation (“dispersed” means that individuals forage solitarily but exhibit a social network). Therefore, the ancestral pattern of primate social organisation was inferred to be a dispersed harem. In fact, new field data on cheirogaleids combined with a review of patterns of social organisation in strepsirhines (lemurs, bushbabies and lorises) revealed that they exhibit either dispersed multi-male systems or dispersed monogamy rather than a dispersed harem system. Therefore, the concept of a dispersed harem system as the ancestral condition of primate social organisation can no longer be supported. In combination with data on social organisation patterns in “primitive” placentals and marsupials, and in monotremes, it is in fact most probable that promiscuity is the ancestral pattern for mammalian social organisation. Subsequently, a dispersed multi-male system derived from promiscuity should be regarded as the ancestral condition for primates. We further suggest that the gregarious patterns of social organisation in Aotus and Avahi, and the dispersed form in Tarsius evolved from the gregarious patterns of diurnal primates rather than from the dispersed nocturnal type. It is consequently proposed that, in addition to Aotus and Tarsius, Avahi is also secondarily nocturnal.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4257  
Permanent link to this record
 

 
Author Sinha, A. doi  openurl
  Title Knowledge acquired and decisions made: triadic interactions during allogrooming in wild bonnet macaques, Macaca radiata Type (up) Journal Article
  Year 1998 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 353 Issue 1368 Pages 619-631  
  Keywords Aggression; Animals; Cognition; Computer Simulation; Decision Making; Evolution; Female; Grooming; Logistic Models; Macaca radiata/*psychology; *Social Behavior; Social Dominance  
  Abstract The pressures of developing and maintaining intricate social relationships may have led to the evolution of enhanced cognitive abilities in many nonhuman primates. Knowledge of the dominance ranks and social relationships of other individuals, in particular, is important in evaluating one's position in the rank hierarchy and affiliative networks. Triadic interactions offer an excellent opportunity to examine whether decisions are taken by individuals on the basis of such knowledge. Allogrooming supplants among wild female bonnet macaques (macaca radiata) usually involved the subordinate female of a grooming dyad retreating at the approach of a female dominant to both members of the dyad. In a few exceptional cases, however, the dominant member of the dyad retreated; simple non-cognitive hypotheses involving dyadic rank differences and agonistic relationships failed to explain this phenomenon. Instead, retreat by the dominant individual was positively correlated with the social attractiveness of her subordinate companion (as measured by the duration of grooming received by the latter from other females in the troop). This suggests that not only does an individual evaluate relationships among other females, but does so on the basis of the amount of grooming received by them. Similarly, the frequency of approaches received by any female was correlated with her social attractiveness when she was the dominant member of the dyad, but not when she was the subordinate. This indicated that approaching females might be aware of the relative dominance ranks of the two allogrooming individuals. In logistic regression analyses, the probability of any individual retreating was found to be influenced more by her knowledge of her rank difference with both the other interactants, rather than by their absolute ranks. Moreover, information about social attractiveness appeared to be used in terms of correlated dominance ranks. The nature of knowledge acquired by bonnet macaque females may thus be egotistical in that other individuals are evaluated relative to oneself, integrative in that information about all other interactants is used simultaneously, and hierarchical in the ability to preferentially use certain categories of knowledge for the storage of related information from other domains.  
  Address National Centre for Biological Sciences, TIFR Centre, Bangalore, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9602536 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4362  
Permanent link to this record
 

 
Author Berger, J. openurl 
  Title Induced abortion and social factors in wild horses Type (up) Journal Article
  Year 1983 Publication Nature Abbreviated Journal Nature  
  Volume 303 Issue 5912 Pages 59-61  
  Keywords Abortion, Induced/*veterinary; Abortion, Veterinary/*etiology; Aggression/physiology; Animals; Evolution; Female; Horses/*physiology; Humans; Pregnancy; Sexual Behavior, Animal/*physiology  
  Abstract Much evidence now suggests that the postnatal killing of young in primates and carnivores, and induced abortions in some rodents, are evolved traits exerting strong selective pressures on adult male and female behaviour. Among ungulates it is perplexing that either no species have developed convergent tactics or that these behaviours are not reported, especially as ungulates have social systems similar to those of members of the above groups. Only in captive horses (Equus caballus) has infant killing been reported. It has been estimated that 40,000 wild horses live in remote areas of the Great Basin Desert of North America (US Department of Interior (Bureau of Land Management), unpublished report), where they occur in harems (females and young) defended by males. Here I present evidence that, rather than killing infants directly, invading males induce abortions in females unprotected by their resident stallions and these females are then inseminated by the new males.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6682487 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4365  
Permanent link to this record
 

 
Author Rogers, L.J. url  doi
openurl 
  Title Evolution of hemispheric specialization: advantages and disadvantages Type (up) Journal Article
  Year 2000 Publication Brain and Language Abbreviated Journal Brain Lang  
  Volume 73 Issue 2 Pages 236-253  
  Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology  
  Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.  
  Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10856176 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4621  
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type (up) Journal Article
  Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Corballis, M.C. url  doi
openurl 
  Title Of mice and men – and lopsided birds Type (up) Journal Article
  Year 2008 Publication Cortex Abbreviated Journal  
  Volume 44 Issue 1 Pages 3-7  
  Keywords Cerebral asymmetry; Handedness; Evolution; Laterality  
  Abstract The article by Zucca and Sovrano (2008, this issue) represents part of a new wave of studies of lateralization in nonhuman species. This work is often in conflict with earlier studies of human cerebral asymmetry and handedness, and the associated claim that these asymmetries are uniquely human, and perhaps even a result of the “speciation event” that led to modern humans. It is now apparent that there are close parallels between human and nonhuman asymmetries, suggesting that they have ancient roots. I argue that asymmetries must be seen in the context of a bilaterally symmetrical body plan, and that there is a balance to be struck between the adaptive advantages of symmetry and asymmetry. In human evolution, systematic asymmetries were incorporated into activities that probably are unique to our species, but the precursors of these asymmetries are increasingly evident in other species, including frogs, fish, birds, and mammals – especially primates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4634  
Permanent link to this record
 

 
Author Dreier, S.; van Zweden, J.S.; D'Ettorre, P. url  doi
openurl 
  Title Long-term memory of individual identity in ant queens Type (up) Journal Article
  Year 2007 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume 3 Issue 5 Pages 459-462  
  Keywords Aggression; Animals; Ants/*physiology; Conditioning, Operant; Evolution; Female; *Memory; *Recognition (Psychology); Social Dominance  
  Abstract Remembering individual identities is part of our own everyday social life. Surprisingly, this ability has recently been shown in two social insects. While paper wasps recognize each other individually through their facial markings, the ant, Pachycondyla villosa, uses chemical cues. In both species, individual recognition is adaptive since it facilitates the maintenance of stable dominance hierarchies among individuals, and thus reduces the cost of conflict within these small societies. Here, we investigated individual recognition in Pachycondyla ants by quantifying the level of aggression between pairs of familiar or unfamiliar queens over time. We show that unrelated founding queens of P. villosa and Pachycondyla inversa store information on the individual identity of other queens and can retrieve it from memory after 24h of separation. Thus, we have documented for the first time that long-term memory of individual identity is present and functional in ants. This novel finding represents an advance in our understanding of the mechanism determining the evolution of cooperation among unrelated individuals.  
  Address Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. sdreier@bi.ku.dk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17594958 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4649  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print