|   | 
Details
   web
Records
Author Cheney, D.L.; Seyfarth, R.M.; Silk, J.B.
Title The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: evidence for causal reasoning? Type (up) Journal Article
Year 1995 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 109 Issue 2 Pages 134-141
Keywords Animals; Attention; Auditory Perception; *Awareness; *Concept Formation; *Dominance-Subordination; Fear; Female; Hierarchy, Social; Papio/*psychology; *Social Behavior; Social Environment; Vocalization, Animal
Abstract Baboons' (Papio cynocephalus ursinus) understanding of cause-effect relations in the context of social interactions was examined through use of a playback experiment. Under natural conditions, dominant female baboons often grunt to more subordinate mothers when interacting with their infants. Mothers occasionally respond to these grunts by uttering submissive fear barks. Subjects were played causally inconsistent call sequences in which a lower ranking female apparently grunted to a higher ranking female, and the higher ranking female apparently responded with fear barks. As a control, subjects heard a sequence made causally consistent by the inclusion of grunts from a 3rd female that was dominant to both of the others. Subjects responded significantly more strongly to the causally inconsistent sequences, suggesting that they recognized the factors that cause 1 individual to give submissive vocalizations to another.
Address Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:7758289 Approved no
Call Number refbase @ user @ Serial 348
Permanent link to this record
 

 
Author Gibson, B.M.; Shettleworth, S.J.
Title Competition among spatial cues in a naturalistic food-carrying task Type (up) Journal Article
Year 2003 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 31 Issue 2 Pages 143-159
Keywords Adaptation, Psychological; Animals; Appetitive Behavior; *Association Learning; *Attention; Choice Behavior; *Cues; *Discrimination Learning; Male; Rats; Rats, Long-Evans; Space Perception; *Spatial Behavior
Abstract Rats collected nuts from a container in a large arena in four experiments testing how learning about a beacon or cue at a goal interacts with learning about other spatial cues (place learning). Place learning was quick, with little evidence of competition from the beacon (Experiments 1 and 2). Rats trained to approach a beacon regardless of its location were subsequently impaired when the well-learned beacon was removed and other spatial cues identified the location of the goal (Experiment 3). The competition between beacon and place cues reflected learned irrelevance for place cues (Experiment 4). The findings differ from those of some studies of associative interactions between cue and place learning in other paradigms.
Address University of Toronto, Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes PMID:12882373 Approved no
Call Number refbase @ user @ Serial 368
Permanent link to this record
 

 
Author Shettleworth, S.J.; Westwood, R.P.
Title Divided attention, memory, and spatial discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile atricapilla) and dark-eyed juncos (Junco hyemalis) Type (up) Journal Article
Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 28 Issue 3 Pages 227-241
Keywords Animals; Attention/*physiology; Behavior, Animal/physiology; Birds; *Discrimination (Psychology); *Food Habits; Memory/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Food-storing birds, black-capped chickadees (Poecile atricapilla), and nonstoring birds, dark-eyed juncos (Junco hyemalis), matched color or location on a touch screen. Both species showed a divided attention effect for color but not for location (Experiment 1). Chickadees performed better on location than on color with retention intervals up to 40 s, but juncos did not (Experiment 2). Increasing sample-distractor distance improved performance similarly in both species. Multidimensional scaling revealed that both use a Euclidean metric of spatial similarity (Experiment 3). When choosing between the location and color of a remembered item, food storers choose location more than do nonstorers. These results explain this effect by differences in memory for location relative to color, not division of attention or spatial discrimination ability.
Address Department of Psychology, University of Toronto, 100 Saint George Street, Toronto, Ontario M5S 3G3, Canada. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:12136700 Approved no
Call Number refbase @ user @ Serial 370
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampus and memory in a food-storing and in a nonstoring bird species Type (up) Journal Article
Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 5 Pages 946-964
Keywords Animals; Appetitive Behavior/*physiology; Attention/physiology; Birds/*physiology; Brain Mapping; Feeding Behavior/*physiology; Mental Recall/*physiology; Organ Size/physiology; Orientation/*physiology; Retention (Psychology)/physiology; Species Specificity
Abstract Food-storing birds maintain in memory a large and constantly changing catalog of the locations of stored food. The hippocampus of food-storing black-capped chickadees (Parus atricapillus) is proportionally larger than that of nonstoring dark-eyed juncos (Junco hyemalis). Chickadees perform better than do juncos in an operant test of spatial non-matching-to-sample (SNMTS), and chickadees are more resistant to interference in this paradigm. Hippocampal lesions attenuate performance in SNMTS and increase interference. In tests of continuous spatial alternation (CSA), juncos perform better than chickadees. CSA performance also declines following hippocampal lesions. By itself, sensitivity of a given task to hippocampal damage does not predict the direction of memory differences between storing and nonstoring species.
Address Department of Psychology, University of Toronto, Ontario, Canada. robert@ln.nimh.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8918998 Approved no
Call Number refbase @ user @ Serial 375
Permanent link to this record
 

 
Author Reid, P.J.; Shettleworth, S.J.
Title Detection of cryptic prey: search image or search rate? Type (up) Journal Article
Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 18 Issue 3 Pages 273-286
Keywords Animals; Appetitive Behavior; *Attention; Color Perception; Columbidae; *Discrimination Learning; Food Preferences/psychology; *Imagination; *Mental Recall; *Predatory Behavior
Abstract Animals' improvement in capturing cryptic prey with experience has long been attributed to a perceptual mechanism, the specific search image. Detection could also be improved by adjusting rate of search. In a series of studies using both naturalistic and operant search tasks, pigeons searched for wheat, dyed to produce 1 conspicuous and 2 equally cryptic prey types. Contrary to the predictions of the search-rate hypothesis, pigeons given a choice between the 2 cryptic types took the type experienced most recently. However, experience with 1 cryptic type improved accuracy on the other cryptic type, a result inconsistent with a search image specific to 1 prey type. Search image may better be thought of as priming of attention to those features of the prey type that best distinguish the prey from the background.
Address University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:1619395 Approved no
Call Number refbase @ user @ Serial 381
Permanent link to this record
 

 
Author Mendl, M.
Title Performing under pressure: stress and cognitive function Type (up) Journal Article
Year 1999 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 65 Issue 3 Pages 221-244
Keywords Stress; Cognition; Attention; Learning; Memory; Welfare
Abstract The way in which cognitive functioning is affected by stressors is an important area of research for applied ethologists because stress caused by captive conditions may disrupt cognitive processes and lead to welfare and husbandry problems. Such problems may be minimised through an understanding of the links between stress and cognition. The effects of stress on cognitive function have been studied in disciplines ranging from human perceptual psychology to animal neuroscience. The aim of this paper is to provide an introduction to this research, focusing on the effects of stressors on attention, memory formation and memory recall. Findings from such a diverse literature with little apparent inter-disciplinary communication are inevitably complex and often contradictory. Nevertheless, some generalities do emerge. The idea that an inverted U-shaped relationship exists between an individual's state of stress or arousal and its ability to perform a cognitive task effectively, the so-called Yerkes-Dodson law, is commonly encountered. The law has limited explanatory value because it is unlikely that different stressors act on cognitive function via the same intervening, non-specific state. Furthermore, the law only provides a very general description of the relationship between stress and cognitive function. Empirical research on attention and memory processes reveals more specific findings. Stressors appear to cause shifts, lapses and narrowing of attention, and can also influence decision speed. These processes may be viewed as serving an adaptive role helping the animal to search for and scrutinise a source of danger. There is conflicting evidence as to whether hormones involved in the hypothalamic-pituitary-adrenal stress response play a part in these processes. These hormones and those involved in the sympathetic-adrenomedullary stress response do appear to play an important role in memory formation. Low or moderate concentrations of circulating glucocorticoids and catecholamines can enhance memory formation, while excessively high or prolonged elevations of these hormones can lead to memory disruption. The effects of stressors on memory recall are less clear. There is evidence for disruptive effects, and for facilitatory effects indicating state-dependent memory recall; events experienced under conditions of high arousal may be best recalled under similar conditions. Applied ethologists have the opportunity to extend work in this area, which often involves studies of single stressors/stress hormones acting in isolation and limited measures of cognitive function, by focusing on real-life husbandry stressors encountered by captive animals. This will yield fundamental information which also has direct relevance to animal welfare and management issues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 393
Permanent link to this record
 

 
Author Itakura, S.
Title Gaze Following and Joint Visual Attention in Nonhuman Animals Type (up) Journal Article
Year 2004 Publication Japanese Psychological Research Abbreviated Journal Jpn. Psychol. Res.
Volume 3 Issue Pages 216-226
Keywords gaze-following; joint visual attention; theory of mind; nonhuman animal
Abstract n this paper, studies of gaze-following and joint visual attention in nonhuman animals are reviewed from the theoretical perspective of Emery (2000). There are many studies of gaze-following and joint visual attention in nonhuman primates. The reports concern not only adult individuals but also the development of these abilities. Studies to date suggest that monkeys and apes are able to follow the gaze of others, but only apes can understand the seeing-knowing relationship with regards to conspecifics in competitive situations. Also, there have recently been some reports of ability to follow the gaze of humans in domestic animals, such as dogs or horses, interacting with humans. These domestic animals are considered to have acquired this ability during their long history of selective breeding by humans. However, we need to clarify social gaze parameters in various species to improve our knowledge of the evolution of how we process others gazing, attention, and mental states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 545
Permanent link to this record
 

 
Author Pepperberg, I.M.
Title In search of king Solomon's ring: cognitive and communicative studies of Grey parrots (Psittacus erithacus) Type (up) Journal Article
Year 2002 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 59 Issue 1-2 Pages 54-67
Keywords *Animal Communication; Animals; Attention/physiology; Cognition/*physiology; Cues; Form Perception/physiology; Humans; Intelligence; Learning/physiology; Male; Models, Psychological; Parrots/*physiology; Psychomotor Performance/physiology; Reward; Social Behavior
Abstract During the past 24 years, I have used a modeling technique (M/R procedure) to train Grey parrots to use an allospecific code (English speech) referentially; I then use the code to test their cognitive abilities. The oldest bird, Alex, labels more than 50 different objects, 7 colors, 5 shapes, quantities to 6, 3 categories (color, shape, material) and uses 'no', 'come here', wanna go X' and 'want Y' (X and Y are appropriate location or item labels). He combines labels to identify, request, comment upon or refuse more than 100 items and to alter his environment. He processes queries to judge category, relative size, quantity, presence or absence of similarity/difference in attributes, and show label comprehension. He semantically separates labeling from requesting. He thus exhibits capacities once presumed limited to humans or nonhuman primates. Studies on this and other Greys show that parrots given training that lacks some aspect of input present in M/R protocols (reference, functionality, social interaction) fail to acquire referential English speech. Examining how input affects the extent to which parrots acquire an allospecific code may elucidate mechanisms of other forms of exceptional learning: learning unlikely in the normal course of development but that can occur under certain conditions.
Address The MIT Media Lab, Cambridge, Mass. 02139, USA. impepper@media.mit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097860 Approved no
Call Number refbase @ user @ Serial 579
Permanent link to this record
 

 
Author Acuna, B.D.; Sanes, J.N.; Donoghue, J.P.
Title Cognitive mechanisms of transitive inference Type (up) Journal Article
Year 2002 Publication Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale Abbreviated Journal Exp Brain Res
Volume 146 Issue 1 Pages 1-10
Keywords Adolescent; Adult; Attention/*physiology; Cognition/*physiology; Female; Humans; Learning/physiology; Linear Models; Male; Photic Stimulation; Psychomotor Performance/physiology; Reaction Time/physiology
Abstract We examined how the brain organizes interrelated facts during learning and how the facts are subsequently manipulated in a transitive inference (TI) paradigm (e.g., if A<B and B<C, then A<C). This task determined features such as learned facts and behavioral goals, but the learned facts could be organized in any of several ways. For example, if one learns a list by operating on paired items, the pairs may be stored individually as separate facts and reaction time (RT) should decrease with learning. Alternatively, the pairs may be stored as a single, unified list, which may yield a different RT pattern. We characterized RT patterns that occurred as participants learned, by trial and error, the predetermined order of 11 shapes. The task goal was to choose the shape occurring closer to the end of the list, and feedback about correctness was provided during this phase. RT increased even as its variance decreased during learning, suggesting that the learnt knowledge became progressively unified into a single representation, requiring more time to manipulate as participants acquired relational knowledge. After learning, non-adjacent (NA) list items were presented to examine how participants reasoned in a TI task. The task goal also required choosing from each presented pair the item occurring closer to the list end, but without feedback. Participants could solve the TI problems by applying formal logic to the previously learnt pairs of adjacent items; alternatively, they could manipulate a single, unified representation of the list. Shorter RT occurred for NA pairs having more intervening items, supporting the hypothesis that humans employ unified mental representations during TI. The response pattern does not support mental logic solutions of applying inference rules sequentially, which would predict longer RT with more intervening items. We conclude that the brain organizes information in such a way that reflects the relations among the items, even if the facts were learned in an arbitrary order, and that this representation is subsequently used to make inferences.
Address Department of Neuroscience, Box 1953, Brown Medical School, Providence, RI 02912, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4819 ISBN Medium
Area Expedition Conference
Notes PMID:12192572 Approved no
Call Number refbase @ user @ Serial 602
Permanent link to this record
 

 
Author Dusek, J.A.; Eichenbaum, H.
Title The hippocampus and memory for orderly stimulus relations Type (up) Journal Article
Year 1997 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 94 Issue 13 Pages 7109-7114
Keywords Animals; Attention; Discrimination (Psychology)/physiology; Hippocampus/anatomy & histology/*physiology; Male; Memory/*physiology; Rats
Abstract Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
Address Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:9192700 Approved no
Call Number refbase @ user @ Serial 607
Permanent link to this record