|   | 
Details
   web
Records
Author Thor, D.H.; Holloway, W.R.
Title (up) Social memory of the male laboratory rat Type Journal Article
Year 1982 Publication Journal of Comparative and Physiological Psychology Abbreviated Journal J. Comp. Physiol. Psychol.
Volume 96 Issue 6 Pages 1000-1006
Keywords duration of social-investigatory behavior, measure of conspecific recognition &; social memory, male rats
Abstract Used duration of social-investigatory behavior by 36 mature male Long-Evans rats as a measure of individual recognition in 5 experiments to assess social memory. In Exp I, the duration of social investigation during a 2nd exposure to the same juvenile (n[en space]=[en space]12) was directly related to the length of the interexposure interval. In Exp II, Ss were exposed to the same or different juvenile 10 min after an initial 5-min exposure to a novel juvenile; reexposure to the same juvenile elicited significantly less social investigation than an exposure to a different juvenile. Exps III and IV demonstrated that following a 5-min introductory exposure, social memory of the juvenile was relatively brief in comparison with that of mature Ss. Exp V revealed a retroactive interference effect on recently acquired memory for an individual: 12 mature Ss exposed to interpolated social experience engaged in significantly longer investigation of a juvenile than those with no interpolated social experience. The combined results suggest that (1) the rat normally engages in spontaneous learning of individual identity and (2) social memory may be a significant aspect of complex social interactions. (16 ref) (PsycINFO Database Record (c) 2006 APA, all rights reserved)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9940 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5133
Permanent link to this record
 

 
Author Church, D.L.; Plowright, C.M.S.
Title (up) Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages 131-140
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Bees/*physiology; Chi-Square Distribution; *Cues; Female; Memory/physiology; Reward; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
Address Psychology Department, Bag Service #45444, University of New Brunswick, Fredericton, NB, E3B 6E4, Canada. dchurchl@unb.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16416106 Approved no
Call Number Equine Behaviour @ team @ Serial 2474
Permanent link to this record
 

 
Author Healy, S.D.; Braham, S.R.; Braithwaite, V.A.
Title (up) Spatial working memory in rats: no differences between the sexes Type Journal Article
Year 1999 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 266 Issue 1435 Pages 2303-2308
Keywords Animals; Estrus/metabolism; Female; Male; Memory/*physiology; Rats; Sex Factors; Swimming
Abstract In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the 'fertility and parental care' hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.
Address Department of Psychology, University of Newcastle, UK. s.healey@ed.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:10629980 Approved no
Call Number Equine Behaviour @ team @ Serial 2818
Permanent link to this record
 

 
Author Treichler, F.R.
Title (up) Successive reversal of concurrent discriminations by macaques (Macaca mulatta): proactive interference effects Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages 75-83
Keywords Animals; Choice Behavior; *Discrimination Learning; Female; Macaca mulatta/*psychology; *Memory; *Proactive Inhibition; Random Allocation; *Reversal Learning
Abstract Rhesus monkeys received concurrent within-session training on eight, two-choice object pairs and then underwent successive reversals of these problems. Initially, reversals required about six times more training than acquisition with no improvement over seven successive reversals. Surprisingly, performance on these eight problems was unimpaired if they were embedded in different eight-problem tasks, thereby indicating a release from proactive interference. When the original eight problems again underwent successive reversal, no improvement was seen over seven reversals, although there was significantly less error-per-reversal than in the initial test. Subsequently, monkeys appeared to be developing a learning set for successive reversal because performance on successive reversal of eight novel problems was not different from that seen with the old familiar task. Set acquisition was confirmed when proficient reversal was eventually achieved on both old and new concurrent tasks. Thus, “concurrent reversal set” did develop, but it required arduous training to overcome proactive interference effects on memory. The ubiquitous influence of measurement context on organization of monkey memory was noted.
Address Kent State University, Kent, Ohio 44242, USA. rtreichl@kent.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15365875 Approved no
Call Number Equine Behaviour @ team @ Serial 2512
Permanent link to this record
 

 
Author Zentall, T.R.
Title (up) Support for a theory of memory for event duration must distinguish between test-trial ambiguity and actual memory loss Type Journal Article
Year 1999 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav
Volume 72 Issue 3 Pages 467-472
Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning, Operant/physiology; Discrimination Learning/physiology; Memory/*physiology; *Psychological Theory; Time Factors; Time Perception/physiology
Abstract Staddon and Higa's (1999) trace-strength theory of timing and memory for event duration can account for pigeons' bias to “choose short” when retention intervals are introduced and to “choose long” when, following training with a fixed retention interval, retention intervals are shortened. However, it does not account for the failure of pigeons to choose short when the intertrial interval is distinct from the retention interval. That finding suggests that stimulus generalization (or ambiguity) between the intertrial interval and the retention interval may result in an effect that has been attributed to memory loss. Such artifacts must be eliminated before a theory of memory for event duration can be adequately tested.
Address Department of Psychology, University of Kentucky, Lexington 40506, USA. zentall@pop.uky.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5002 ISBN Medium
Area Expedition Conference
Notes PMID:10605105 Approved no
Call Number refbase @ user @ Serial 251
Permanent link to this record
 

 
Author Griffiths, D.P.; Clayton, N.S.
Title (up) Testing episodic memory in animals: A new approach Type Journal Article
Year 2001 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 73 Issue 5 Pages 755-762
Keywords Episodic memory; Food-caching; Animal models
Abstract Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory “receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events.” Thus, episodic memory provides information about the `what' and `when' of events (`temporally dated experiences') and about `where' they happened (`temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 401
Permanent link to this record
 

 
Author Hare, B.; Brown, M.; Williamson, C.; Tomasello, M.
Title (up) The domestication of social cognition in dogs Type Journal Article
Year 2002 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 298 Issue 5598 Pages 1634-1636
Keywords Animals; *Animals, Domestic; *Behavior, Animal; *Cognition; *Cues; *Dogs; Food; Humans; Memory; Pan troglodytes; *Social Behavior; Species Specificity; Vision; Wolves
Abstract Dogs are more skillful than great apes at a number of tasks in which they must read human communicative signals indicating the location of hidden food. In this study, we found that wolves who were raised by humans do not show these same skills, whereas domestic dog puppies only a few weeks old, even those that have had little human contact, do show these skills. These findings suggest that during the process of domestication, dogs have been selected for a set of social-cognitive abilities that enable them to communicate with humans in unique ways.
Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA. bhare@fas.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-9203 ISBN Medium
Area Expedition Conference
Notes PMID:12446914 Approved no
Call Number refbase @ user @ Serial 595
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J
Title (up) The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
Year 2001 Publication Biological Reviews Abbreviated Journal
Volume 76 Issue 3 Pages 341-364
Keywords biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.
Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4797
Permanent link to this record
 

 
Author Dusek, J.A.; Eichenbaum, H.
Title (up) The hippocampus and memory for orderly stimulus relations Type Journal Article
Year 1997 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 94 Issue 13 Pages 7109-7114
Keywords Animals; Attention; Discrimination (Psychology)/physiology; Hippocampus/anatomy & histology/*physiology; Male; Memory/*physiology; Rats
Abstract Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans.
Address Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:9192700 Approved no
Call Number refbase @ user @ Serial 607
Permanent link to this record
 

 
Author Allcroft, D. J.; Tolkamp, B. J.; Glasbey, C. A.; Kyriazakis, I.
Title (up) The importance of `memory' in statistical models for animal feeding behaviour Type Journal Article
Year 2004 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 67 Issue 1 Pages 99-109
Keywords Cow; Feeding data; Bouts; Memory; Satiety; Latent structure; Model comparison
Abstract We investigate models for animal feeding behaviour, with the aim of improving understanding of how animals organise their behaviour in the short term. We consider three classes of model: hidden Markov, latent Gaussian and semi-Markov. Each can predict the typical `clustered' feeding behaviour that is generally observed, however they differ in the extent to which `memory' of previous behaviour is allowed to affect future behaviour. The hidden Markov model has `lack of memory', the current behavioural state being dependent on the previous state only. The latent Gaussian model assumes feeding/non-feeding periods to occur by the thresholding of an underlying continuous variable, thereby incorporating some `short-term memory'. The semi-Markov model, by taking into account the duration of time spent in the previous state, can be said to incorporate `longer-term memory'. We fit each of these models to a dataset of cow feeding behaviour. We find the semi-Markov model (longer-term memory) to have the best fit to the data and the hidden Markov model (lack of memory) the worst. We argue that in view of effects of satiety on short-term feeding behaviour of animal species in general, biologically suitable models should allow `memory' to play a role. We conclude that our findings are equally relevant for the analysis of other types of short-term behaviour that are governed by satiety-like principles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 2350
Permanent link to this record