toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brennan, P.A. doi  openurl
  Title (up) The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
  Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 46 Issue 3 Pages 231-240  
  Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology  
  Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325224 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4191  
Permanent link to this record
 

 
Author Watanabe, S.; Troje, N.F. doi  openurl
  Title (up) Towards a “virtual pigeon”: a new technique for investigating avian social perception Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 271-279  
  Keywords Animals; Behavioral Research/instrumentation/methods; Columbidae/*physiology; Computer Graphics; *Computer Simulation; Discrimination Learning/*physiology; Generalization (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Perceptual Masking/physiology; Rats; Recognition (Psychology)/physiology; *Social Behavior; User-Computer Interface  
  Abstract The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.  
  Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108, Japan. swat@flet.keio.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17024508 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2437  
Permanent link to this record
 

 
Author Plotnik, J.; Nelson, P.A.; de Waal, F.B.M. openurl 
  Title (up) Visual field information in the face perception of chimpanzees (Pan troglodytes) Type Journal Article
  Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1000 Issue Pages 94-98  
  Keywords Animals; *Facial Expression; Pan troglodytes; Recognition (Psychology); Visual Fields/*physiology; Visual Perception/*physiology  
  Abstract Evidence for a visual field advantage (VFA) in the face perception of chimpanzees was investigated using a modification of a free-vision task. Four of six chimpanzee subjects previously trained on a computer joystick match-to-sample paradigm were able to distinguish between images of neutral face chimeras consisting of two left sides (LL) or right sides (RR) of the face. While an individual's ability to make this distinction would be unlikely to determine their suitability for the VFA tests, it was important to establish that distinctive information was available in test images. Data were then recorded on their choice of the LL vs. RR chimera as a match to the true, neutral image; a bias for one of these options would indicate an hemispatial visual field advantage. Results suggest that chimpanzees, unlike humans, do not exhibit a left visual field advantage. These results have important implications for studies on laterality and asymmetry in facial signals and their perception in primates.  
  Address Department of Animal Science, Cornell University, Ithaca, New York 14853, USA. jmp63@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14766624 Approved no  
  Call Number refbase @ user @ Serial 175  
Permanent link to this record
 

 
Author Vokey, J.R.; Rendall, D.; Tangen, J.M.; Parr, L.A.; de Waal, F.B.M. doi  openurl
  Title (up) Visual kin recognition and family resemblance in chimpanzees (Pan troglodytes) Type Journal Article
  Year 2004 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol  
  Volume 118 Issue 2 Pages 194-199  
  Keywords Animals; Female; Male; Pan troglodytes; Random Allocation; *Recognition (Psychology); *Visual Perception  
  Abstract The male-offspring biased visual kin recognition in chimpanzees (Pan troglodytes) reported by L. A. Parr and F. B. M. de Waal (1999) was replicated with human (Homo sapiens) participants and a principal components analysis (PCA) of pixel maps of the chimpanzee face photos. With the same original materials and methods, both humans and the PCA produced the same asymmetry in kin recognition as found with the chimpanzees. The PCA suggested that the asymmetry was a function of differences in the distribution of global characteristics associated with the framing of the faces in the son and daughter test sets. Eliminating potential framing biases, either by cropping the photos tightly to the faces or by rebalancing the recognition foils, eliminated the asymmetry but not human participants' ability to recognize chimpanzee kin.  
  Address Department of Psychology and Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada. vokey@uleth.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15250806 Approved no  
  Call Number refbase @ user @ Serial 171  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print