|   | 
Details
   web
Records
Author Reid, P.J.; Shettleworth, S.J.
Title (up) Detection of cryptic prey: search image or search rate? Type Journal Article
Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 18 Issue 3 Pages 273-286
Keywords Animals; Appetitive Behavior; *Attention; Color Perception; Columbidae; *Discrimination Learning; Food Preferences/psychology; *Imagination; *Mental Recall; *Predatory Behavior
Abstract Animals' improvement in capturing cryptic prey with experience has long been attributed to a perceptual mechanism, the specific search image. Detection could also be improved by adjusting rate of search. In a series of studies using both naturalistic and operant search tasks, pigeons searched for wheat, dyed to produce 1 conspicuous and 2 equally cryptic prey types. Contrary to the predictions of the search-rate hypothesis, pigeons given a choice between the 2 cryptic types took the type experienced most recently. However, experience with 1 cryptic type improved accuracy on the other cryptic type, a result inconsistent with a search image specific to 1 prey type. Search image may better be thought of as priming of attention to those features of the prey type that best distinguish the prey from the background.
Address University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:1619395 Approved no
Call Number refbase @ user @ Serial 381
Permanent link to this record
 

 
Author Zucca, P.; Antonelli, F.; Vallortigara, G.
Title (up) Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria) Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages 122-128
Keywords Animals; *Avoidance Learning; *Birds; Canaries; Charadriiformes; Coturnix; *Discrimination Learning; Orientation; *Space Perception; *Spatial Behavior; Species Specificity
Abstract Detour behaviour is the ability of an animal to reach a goal stimulus by moving round any interposed obstacle. It has been widely studied and has been proposed as a test of insight learning in several species of mammals, but few data are available in birds. A comparative study in three species of birds, belonging to different eco-ethological niches, allows a better understanding of the cognitive mechanism of such detour behaviour. Young quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria), 1 month old, 10-25 days old and 4-6 months old, respectively, were tested in a detour situation requiring them to abandon a clear view of a biologically interesting object (their own reflection in a mirror) in order to approach that object. Birds were placed in a closed corridor, at one end of which was a barrier through which the object was visible. Four different types of barrier were used: vertical bar, horizontal bar, grid and transparent. Two symmetrical apertures placed midline in the corridor allowed the birds to adopt routes passing around the barrier. After entering the apertures, birds could turn either right or left to re-establish social contact with the object in the absence of any local sensory cues emanating from it. Quails appeared able to solve the task, though their performance depended on the type of barrier used, which appeared to modulate their relative interest in approaching the object or in exploring the surroundings. Young herring gulls also showed excellent abilities to locate spatially the out-of-view object, except when the transparent barrier was used. Canaries, on the other hand, appeared completely unable to solve the detour task, whatever barrier was in use. It is suggested that these species differences can be accounted for in terms of adaptation to a terrestrial or aerial environment.
Address Laboratory of Animal Cognition and Comparative Neuroscience, Department of Psychology, University of Trieste, Via S. Anastasio 12, 34100, Trieste, Italy. zucca@units.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15449104 Approved no
Call Number Equine Behaviour @ team @ Serial 2506
Permanent link to this record
 

 
Author Iversen, I.H.; Matsuzawa, T.
Title (up) Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task Type Journal Article
Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 6 Issue 3 Pages 169-183
Keywords Animals; Female; Hand/physiology; Motion Perception/*physiology; Movement/physiology; Pan troglodytes/*physiology; Spatial Behavior/*physiology; *Task Performance and Analysis; User-Computer Interface; Visual Perception/physiology
Abstract The experiments investigated how two adult captive chimpanzees learned to navigate in an automated interception task. They had to capture a visual target that moved predictably on a touch monitor. The aim of the study was to determine the learning stages that led to an efficient strategy of intercepting the target. The chimpanzees had prior training in moving a finger on a touch monitor and were exposed to the interception task without any explicit training. With a finger the subject could move a small “ball” at any speed on the screen toward a visual target that moved at a fixed speed either back and forth in a linear path or around the edge of the screen in a rectangular pattern. Initial ball and target locations varied from trial to trial. The subjects received a small fruit reinforcement when they hit the target with the ball. The speed of target movement was increased across training stages up to 38 cm/s. Learning progressed from merely chasing the target to intercepting the target by moving the ball to a point on the screen that coincided with arrival of the target at that point. Performance improvement consisted of reduction in redundancy of the movement path and reduction in the time to target interception. Analysis of the finger's movement path showed that the subjects anticipated the target's movement even before it began to move. Thus, the subjects learned to use the target's initial resting location at trial onset as a predictive signal for where the target would later be when it began moving. During probe trials, where the target unpredictably remained stationary throughout the trial, the subjects first moved the ball in anticipation of expected target movement and then corrected the movement to steer the ball to the resting target. Anticipatory ball movement in probe trials with novel ball and target locations (tested for one subject) showed generalized interception beyond the trained ball and target locations. The experiments illustrate in a laboratory setting the development of a highly complex and adaptive motor performance that resembles navigational skills seen in natural settings where predators intercept the path of moving prey.
Address Department of Psychology, University of North Florida, Jacksonville, FL 32224, USA. iiversen@unf.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12761656 Approved no
Call Number Equine Behaviour @ team @ Serial 2567
Permanent link to this record
 

 
Author Hauber, M.E.; Pearson, H.E.; Reh, A.; Merges, A.
Title (up) Discrimination between host songs by brood parasitic brown-headed cowbirds ( Molothrus ater) Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 3 Pages 129-137
Keywords Animals; *Auditory Perception; *Discrimination Learning; Female; Male; Sexual Behavior; *Songbirds; *Vocalization, Animal
Abstract Songbirds can learn both to produce and to discriminate between different classes of acoustic stimuli. Varying levels of auditory discrimination may improve the fitness of individuals in certain ecological and social contexts and, thus, selection is expected to mold the cognitive abilities of different species according to the potential benefits of acoustic processing. Although fine-scale auditory discrimination of conspecific songs and calls has been frequently reported for brood parasitic brown-headed cowbirds ( Molothrus ater), it remains unclear why and how they perceive differently the songs of their many host species. Using habituation-dishabituation paradigms and measuring behavioral and physiological (heart-rate) responses, we found that captive female cowbirds consistently discriminated between songs of two host species, the song sparrow ( Melospiza melodia) and the red-winged blackbird ( Agelaius phoeniceus). Playback experiments with stimuli composed of con-specific followed by heterospecific vocalizations in the field also demonstrated discrimination between these heterospecific songs even though cowbirds were not attracted to playbacks of either host species' songs alone. Our results do not directly support a nest-searching function of heterospecific song discrimination by cowbirds and are most consistent with a function of the parasites' avoidance of attacks by their aggressive hosts. These data demonstrate discrimination between heterospecific vocalizations by brown-headed cowbirds and add a novel dimension to the already expansive auditory perceptual abilities of brood parasitic species and other songbirds.
Address Field Neurobiology and Behavior, Cornell, University, Ithaca, NY 14853, USA. hauberm@socrates.berkeley.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12357285 Approved no
Call Number Equine Behaviour @ team @ Serial 2600
Permanent link to this record
 

 
Author Goto, K.; Lea, S.E.G.; Dittrich, W.H.
Title (up) Discrimination of intentional and random motion paths by pigeons Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 3 Pages 119-127
Keywords Animals; *Columbidae; *Discrimination Learning; *Motion Perception; Recognition (Psychology)
Abstract Twelve pigeons ( Columba livia) were trained on a go/no-go schedule to discriminate between two kinds of movement patterns of dots, which to human observers appear to be “intentional” and “non-intentional” movements. In experiment 1, the intentional motion stimulus contained one dot (a “wolf”) that moved systematically towards another dot as though stalking it, and three distractors (“sheep”). The non-intentional motion stimulus consisted of four distractors but no stalker. Birds showed some improvement of discrimination as the sessions progressed, but high levels of discrimination were not reached. In experiment 2, the same birds were tested with different stimuli. The same parameters were used but the number of intentionally moving dots in the intentional motion stimulus was altered, so that three wolves stalked one sheep. Despite the enhanced difference of movement patterns, the birds did not show any further improvement in discrimination. However, birds for which the non-intentional stimulus was associated with reward showed a decline in discrimination. These results indicated that pigeons can discriminate between stimuli that do and do not contain an element that human observer see as moving intentionally. However, as no feature-positive effect was found in experiment 1, it is assumed that pigeons did not perceive or discriminate these stimuli on the basis that the intentional stimuli contained a feature that the non-intentional stimuli lacked, though the convergence seen in experiment 2 may have been an effective feature for the pigeons. Pigeons seem to be able to recognise some form of multiple simultaneously goal-directed motions, compared to random motions, as a distinctive feature, but do not seem to use simple “intentional” motion paths of two geometrical figures, embedded in random motions, as a feature whose presence or absence differentiates motion displays.
Address School of Psychology, University of Exeter, Washington Singer Laboratories, Exeter EX4 4QG, UK. K.Goto@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12357284 Approved no
Call Number Equine Behaviour @ team @ Serial 2601
Permanent link to this record
 

 
Author Zentall, S.S.; Zentall, T.R.; Barack, R.C.
Title (up) Distraction as a function of within-task stimulation for hyperactive and normal children Type Journal Article
Year 1978 Publication Journal of learning disabilities Abbreviated Journal J Learn Disabil
Volume 11 Issue 9 Pages 540-548
Keywords *Attention; Child; Child, Preschool; Color Perception; Female; Humans; Hyperkinesis/*psychology; Male; Motor Skills; *Task Performance and Analysis; Visual Perception
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2194 ISBN Medium
Area Expedition Conference
Notes PMID:731119 Approved no
Call Number refbase @ user @ Serial 270
Permanent link to this record
 

 
Author Shettleworth, S.J.; Westwood, R.P.
Title (up) Divided attention, memory, and spatial discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile atricapilla) and dark-eyed juncos (Junco hyemalis) Type Journal Article
Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 28 Issue 3 Pages 227-241
Keywords Animals; Attention/*physiology; Behavior, Animal/physiology; Birds; *Discrimination (Psychology); *Food Habits; Memory/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Food-storing birds, black-capped chickadees (Poecile atricapilla), and nonstoring birds, dark-eyed juncos (Junco hyemalis), matched color or location on a touch screen. Both species showed a divided attention effect for color but not for location (Experiment 1). Chickadees performed better on location than on color with retention intervals up to 40 s, but juncos did not (Experiment 2). Increasing sample-distractor distance improved performance similarly in both species. Multidimensional scaling revealed that both use a Euclidean metric of spatial similarity (Experiment 3). When choosing between the location and color of a remembered item, food storers choose location more than do nonstorers. These results explain this effect by differences in memory for location relative to color, not division of attention or spatial discrimination ability.
Address Department of Psychology, University of Toronto, 100 Saint George Street, Toronto, Ontario M5S 3G3, Canada. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:12136700 Approved no
Call Number refbase @ user @ Serial 370
Permanent link to this record
 

 
Author Bennett, A.T.
Title (up) Do animals have cognitive maps? Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 219-224
Keywords Animals; Cognition/*physiology; Humans; Space Perception/*physiology; Visual Pathways
Abstract Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.
Address Department of Pure Mathematics, University of Adelaide, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576693 Approved no
Call Number Equine Behaviour @ team @ Serial 2756
Permanent link to this record
 

 
Author Werner, C.W.; Tiemann, I.; Cnotka, J.; Rehkamper, G.
Title (up) Do chickens (Gallus gallus f. domestica) decompose visual figures? Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages 129-140
Keywords Animals; *Chickens; Conditioning, Classical; *Discrimination Learning; Female; *Pattern Recognition, Visual; Photic Stimulation; *Visual Perception
Abstract To investigate whether learning to discriminate between visual compound stimuli depends on decomposing them into constituting features, hens were first trained to discriminate four features (red, green, horizontal, vertical) from two dimensions (colour, line orientation). After acquisition, hens were trained with compound stimuli made up from these dimensions in two ways: a separable (line on a coloured background) stimulus and an integral one (coloured line). This compound training included a reversal of reinforcement of only one of the two dimensions (half-reversal). After having achieved the compound stimulus discrimination, a second dimensional training identical to the first was performed. Finally, in the second compound training the other dimension was reversed. Two major results were found: (1) an interaction between the dimension reversed and the type of compound stimulus: in compound training with colour reversal, separable compound stimuli were discriminated worse than integral compounds and vice versa in compound training with line orientation reversed. (2) Performance in the second compound training was worse than in the first one. The first result points to a similar mode of processing for separable and integral compounds, whereas the second result shows that the whole stimulus is psychologically superior to its constituting features. Experiment 2 repeated experiment 1 using line orientation stimuli of reversed line and background brightness. Nevertheless, the results were similar to experiment 1. Results are discussed in the framework of a configural exemplar theory of discrimination that assumes the representation of the whole stimulus situation combined with transfer based on a measure of overall similarity.
Address C. and O. Vogt Institute of Brain Research, Heinrich Heine University Dusseldorf, Universitatsstr. 1, 40225, Dusseldorf, Germany. wernerc@uni-duesseldorf.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15490291 Approved no
Call Number Equine Behaviour @ team @ Serial 2503
Permanent link to this record
 

 
Author Collier-Baker, E.; Davis, J.M.; Nielsen, M.; Suddendorf, T.
Title (up) Do chimpanzees (Pan troglodytes) understand single invisible displacement? Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 55-61
Keywords Animals; Behavior, Animal; *Cognition; Male; Pan troglodytes/*psychology; *Space Perception; *Spatial Behavior; Task Performance and Analysis; *Visual Perception
Abstract Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.
Address Early Cognitive Development Unit, School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia. e.collier-baker@psy.uq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163481 Approved no
Call Number Equine Behaviour @ team @ Serial 2482
Permanent link to this record