|   | 
Details
   web
Records
Author Wasserman, E.A.
Title (down) The science of animal cognition: past, present, and future Type Journal Article
Year 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 23 Issue 2 Pages 123-135
Keywords Animal Communication; Animal Population Groups/*psychology; Animals; Behavior, Animal; Behavioral Sciences/*trends; *Cognition; Evolution; Forecasting; Humans; Intelligence
Abstract The field of animal cognition is strongly rooted in the philosophy of mind and in the theory of evolution. Despite these strong roots, work during the most famous and active period in the history of our science-the 1930s, 1940s, and 1950s-may have diverted us from the very questions that were of greatest initial interest to the comparative analysis of learning and behavior. Subsequently, the field has been in steady decline despite its increasing breadth and sophistication. Renewal of the field of animal cognition may require a return to the original questions of animal communication and intelligence using the most advanced tools of modern psychological science. Reclaiming center stage in contemporary psychology will be difficult; planning that effort with a host of strategies should enhance the chances of success.
Address Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:9095537 Approved no
Call Number Equine Behaviour @ team @ Serial 2779
Permanent link to this record
 

 
Author Brannon, E.M.; Cantlon, J.F.; Terrace, H.S.
Title (down) The role of reference points in ordinal numerical comparisons by rhesus macaques (Macaca mulatta) Type Journal Article
Year 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 32 Issue 2 Pages 120-134
Keywords Animals; *Cognition; *Discrimination (Psychology); *Generalization (Psychology); Macaca mulatta/*psychology; Male; Mathematics; *Pattern Recognition, Visual
Abstract Two experiments examined ordinal numerical knowledge in rhesus macaques (Macaca mulatta). Experiment 1 replicated the finding (E. M. Brannon & H. S. Terrace, 2000) that monkeys trained to respond in descending numerical order (4-->3-->2-->1) did not generalize the descending rule to the novel values 5-9 in contrast to monkeys trained to respond in ascending order. Experiment 2 examined whether the failure to generalize a descending rule was due to the direction of the training sequence or to the specific values used in the training sequence. Results implicated 3 factors that characterize a monkey's numerical comparison process: Weber's law, knowledge of ordinal direction, and a comparison of each value in a test pair with the reference point established by the first value of the training sequence.
Address Center for Cognitive Neuroscience and Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708, USA. brannon@duke.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:16634655 Approved no
Call Number Equine Behaviour @ team @ Serial 2761
Permanent link to this record
 

 
Author Tomasello, M.; Call, J.
Title (down) The role of humans in the cognitive development of apes revisited Type Journal Article
Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 4 Pages 213-215
Keywords Animals; *Behavior, Animal; *Cognition; Culture; Hominidae/*psychology; Humans; *Imitative Behavior; Imprinting (Psychology); *Intention; Social Behavior; *Social Environment; Species Specificity
Abstract
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. tomas@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15278733 Approved no
Call Number Equine Behaviour @ team @ Serial 2517
Permanent link to this record
 

 
Author Wasserman, E.A.; Gagliardi, J.L.; Cook, B.R.; Kirkpatrick-Steger, K.; Astley, S.L.; Biederman, I.
Title (down) The pigeon's recognition of drawings of depth-rotated stimuli Type Journal Article
Year 1996 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 22 Issue 2 Pages 205-221
Keywords Animals; Cognition/*physiology; Columbidae; Discrimination (Psychology); Form Perception/*physiology; Learning/*physiology; Photic Stimulation; Rotation
Abstract Four experiments used a four-choice discrimination learning paradigm to explore the pigeon's recognition of line drawings of four objects (an airplane, a chair, a desk lamp, and a flashlight) that were rotated in depth. The pigeons reliably generalized discriminative responding to pictorial stimuli over all untrained depth rotations, despite the bird's having been trained at only a single depth orientation. These generalization gradients closely resembled those found in prior research that used other stimulus dimensions. Increasing the number of different vantage points in the training set from one to three broadened the range of generalized testing performance, with wider spacing of the training orientations more effectively broadening generalized responding. Template and geon theories of visual recognition are applied to these empirical results.
Address Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.educ
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8618103 Approved no
Call Number Equine Behaviour @ team @ Serial 2780
Permanent link to this record
 

 
Author Brennan, P.A.
Title (down) The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav
Volume 46 Issue 3 Pages 231-240
Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology
Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.
Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-506X ISBN Medium
Area Expedition Conference
Notes PMID:15325224 Approved no
Call Number Equine Behaviour @ team @ Serial 4191
Permanent link to this record
 

 
Author de Waal, F.B.M.; Dindo, M.; Freeman, C.A.; Hall, M.J.
Title (down) The monkey in the mirror: hardly a stranger Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 32 Pages 11140-11147
Keywords Analysis of Variance; Animals; Cebus/*physiology; *Discrimination (Psychology); Empathy; Female; Male; Observation; *Recognition (Psychology); *Self Concept; Sex Factors
Abstract It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self-other distinction intermediate between seeing their mirror image as other and recognizing it as self.
Address Living Links Center, Emory University, Atlanta, GA 30322, USA. dewaal@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16055557 Approved no
Call Number refbase @ user @ Serial 164
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S.
Title (down) The mind through chick eyes: memory, cognition and anticipation Type Journal Article
Year 2003 Publication Zoological Science Abbreviated Journal Zoolog Sci
Volume 20 Issue 4 Pages 395-408
Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology
Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”
Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0289-0003 ISBN Medium
Area Expedition Conference
Notes PMID:12719641 Approved no
Call Number Equine Behaviour @ team @ Serial 2858
Permanent link to this record
 

 
Author Levy, J.
Title (down) The mammalian brain and the adaptive advantage of cerebral asymmetry Type Journal Article
Year 1977 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 299 Issue Pages 264-272
Keywords *Adaptation, Physiological; Adaptation, Psychological/physiology; Animals; Behavior, Animal/physiology; Brain/*physiology; Cognition/physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Intelligence; Perception/physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:280207 Approved no
Call Number Equine Behaviour @ team @ Serial 4137
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E.
Title (down) The logic of the stimulus Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages 247-256
Keywords Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity
Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.
Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16909234 Approved no
Call Number Equine Behaviour @ team @ Serial 2450
Permanent link to this record
 

 
Author Curtis, S.E.; Stricklin, W.R.
Title (down) The importance of animal cognition in agricultural animal production systems: an overview Type Journal Article
Year 1991 Publication Journal of Animal Science Abbreviated Journal J. Anim Sci.
Volume 69 Issue 12 Pages 5001-5007
Keywords *Agriculture; Animal Population Groups/*psychology; *Animal Welfare; Animals; *Behavior, Animal; *Cognition; Heat; Helplessness, Learned; Housing, Animal/standards; Immobilization; Nesting Behavior; Pain/psychology/veterinary
Abstract To describe and then fulfill agricultural animals' needs, we must learn more about their fundamental psychological and behavioral processes. How does this animal feel? Is that animal suffering? Will we ever be able to know these things? Scientists specializing in animal cognition say that there are numerous problems but that they can be overcome. Recognition by scientists of the notion of animal awareness has been increasing in recent years, because of the work of Griffin and others. Feeling, thinking, remembering, and imagining are cognitive processes that are factors in the economic and humane production of agricultural animals. It has been observed that the animal welfare debate depends on two controversial questions: Do animals have subjective feelings? If they do, can we find indicators that reveal them? Here, indirect behavioral analysis approaches must be taken. Moreover, the linear additivity of several stressor effects on a variety of animal traits suggests that some single phenomenon is acting as a “clearinghouse” for many or all of the stresses acting on an animal at any given time, and this phenomenon might be psychological stress. Specific situations animals may encounter in agricultural production settings are discussed with respect to the animals' subjective feelings.
Address University of Illinois, Urbana 61801
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8812 ISBN Medium
Area Expedition Conference
Notes PMID:1808193 Approved no
Call Number Equine Behaviour @ team @ Serial 2754
Permanent link to this record