|   | 
Details
   web
Records
Author Hardy, J.L.
Title (up) The ecology of western equine encephalomyelitis virus in the Central Valley of California, 1945-1985 Type Journal Article
Year 1987 Publication The American Journal of Tropical Medicine and Hygiene Abbreviated Journal Am J Trop Med Hyg
Volume 37 Issue 3 Suppl Pages 18s-32s
Keywords Aedes/microbiology; Animals; Birds; California; Culex/microbiology; Encephalitis Virus, Western Equine/*physiology; Encephalomyelitis, Equine/*history/microbiology/transmission/veterinary; History, 20th Century; Horse Diseases/history/transmission; Horses; Humans; Insect Vectors/microbiology; Mammals
Abstract Reeves' concept of the summer transmission cycle of western equine encephalomyelitis virus in 1945 was that the virus was amplified in a silent transmission cycle involving mosquitoes, domestic chickens, and possibly wild birds, from which it could be transmitted tangentially to and cause disease in human and equine populations. Extensive field and laboratory studies done since 1945 in the Central Valley of California have more clearly defined the specific invertebrate and vertebrate hosts involved in the basic virus transmission cycle, but the overall concept remains unchanged. The basic transmission cycle involves Culex tarsalis as the primary vector mosquito species and house finches and house sparrows as the primary amplifying hosts. Secondary amplifying hosts, upon which Cx. tarsalis frequently feeds, include other passerine species, chickens, and possibly pheasants in areas where they are abundant. Another transmission cycle that most likely is initiated from the Cx. tarsalis-wild bird cycle involves Aedes melanimon and the blacktail jackrabbit. Like humans and horses, California ground squirrels, western tree squirrels, and a few other wild mammal species become infected tangentially with the virus but do not contribute significantly to virus amplification.
Address Department of Biomedical and Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9637 ISBN Medium
Area Expedition Conference
Notes PMID:3318522 Approved no
Call Number Equine Behaviour @ team @ Serial 2677
Permanent link to this record
 

 
Author Apfelbach, R.; Blanchard, C.D.; Blanchard, R.J.; Hayes, R.A.; McGregor, I.S.
Title (up) The effects of predator odors in mammalian prey species: A review of field and laboratory studies Type Journal Article
Year 2005 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal
Volume 29 Issue 8 Pages 1123-1144
Keywords Behavioral suppression; Defensive behavior; Endocrine effects; Neural effects; Predator odor; Small mammals
Abstract Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. © 2005 Elsevier Ltd. All rights reserved.
Address School of Psychology, University of Sydney, Sydney, NSW 2006, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4565
Permanent link to this record
 

 
Author Wilson, D.A.; Stevenson, R.J.
Title (up) The fundamental role of memory in olfactory perception Type Journal Article
Year 2003 Publication Trends in Neurosciences Abbreviated Journal Trends. Neurosci.
Volume 26 Issue 5 Pages 243-247
Keywords olfactory perception mammals
Abstract Current emphasis on odorant physiochemical features as the basis for perception largely ignores the synthetic and experience-dependent nature of olfaction. Olfaction is synthetic, as mammals have only limited ability to identify elements within even simple odor mixtures. Furthermore, olfaction is experience-bound, as exposure alone can significantly affect the extent to which stimuli can be discriminated. We propose that early analytical processing of odors is inaccessible at the behavioral level and that all odors are initially encoded as `objects' in the piriform cortex. Moreover, we suggest that odor perception is wholly dependent on the integrity of this memory system and that its loss severely impairs normal perception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 795
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title (up) The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Thackeray, J.F.
Title (up) Zebras from wonderwerk cave, northern Cape province, South Africa: attempts to distinguish Equus burchelli and E. quagga Type Journal Article
Year 1988 Publication South African journal of science Abbreviated Journal Suid- Afrikaanse Tydsskrif vir Wetenskap
Volume 84 Issue Pages 99-101
Keywords Cape Province; Teeth; Statistical analysis; Equidae; Hippomorpha; South Africa; Southern Africa; Perissodactyla; Mammalia; Vertebrata
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-2353 ISBN Medium
Area Expedition Conference
Notes from Professor Hans Klingels Equine Reference List Approved yes
Call Number Serial 1644
Permanent link to this record
 

 
Author Sukhomlinov, B.F.; Korobov, V.N.; Gonchar, M.V.; Datsiuk, L.A.; Korzhev, V.A.
Title (up) [Comparative analysis of the peroxidase activity of myoglobins in mammals] Type Journal Article
Year 1987 Publication Zhurnal Evoliutsionnoi Biokhimii i Fiziologii Abbreviated Journal Zh Evol Biokhim Fiziol
Volume 23 Issue 1 Pages 37-41
Keywords Amino Acid Sequence; Animals; Ecology; *Evolution; Kinetics; Mammals/*metabolism; Myoglobin/*metabolism; Peroxidases/*metabolism
Abstract Studies have been made on the peroxidase activity of metmyoglobins in animals from various ecological groups--the horse Equus caballus, cattle Bos taurus, beaver Castor fiber, otter Lutra lutra, mink Mustela vison and dog Canis familiaris. It was found that the level of this activity in diving animals depends on the duration of their diving, whereas in terrestrial species--on the strength of muscular contraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title Sravnitel'nyi analiz peroksidaznoi aktivnosti mioglobinov u mlekopitaiushchikh
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-4529 ISBN Medium
Area Expedition Conference
Notes PMID:3564776 Approved no
Call Number Equine Behaviour @ team @ Serial 2681
Permanent link to this record