toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hare, B.; Plyusnina, I.; Ignacio, N.; Schepina, O.; Stepika, A.; Wrangham, R.; Trut, L. doi  openurl
  Title (up) Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication Type Journal Article
  Year 2005 Publication Current biology : CB Abbreviated Journal Curr Biol  
  Volume 15 Issue 3 Pages 226-230  
  Keywords Animals; *Animals, Domestic; Cognition/*physiology; *Cues; *Evolution; Foxes/*physiology; *Selection (Genetics); Social Behavior; Species Specificity  
  Abstract Dogs have an unusual ability for reading human communicative gestures (e.g., pointing) in comparison to either nonhuman primates (including chimpanzees) or wolves . Although this unusual communicative ability seems to have evolved during domestication , it is unclear whether this evolution occurred as a result of direct selection for this ability, as previously hypothesized , or as a correlated by-product of selection against fear and aggression toward humans--as is the case with a number of morphological and physiological changes associated with domestication . We show here that fox kits from an experimental population selectively bred over 45 years to approach humans fearlessly and nonaggressively (i.e., experimentally domesticated) are not only as skillful as dog puppies in using human gestures but are also more skilled than fox kits from a second, control population not bred for tame behavior (critically, neither population of foxes was ever bred or tested for their ability to use human gestures) . These results suggest that sociocognitive evolution has occurred in the experimental foxes, and possibly domestic dogs, as a correlated by-product of selection on systems mediating fear and aggression, and it is likely the observed social cognitive evolution did not require direct selection for improved social cognitive ability.  
  Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA. hare@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15694305 Approved no  
  Call Number refbase @ user @ Serial 594  
Permanent link to this record
 

 
Author Liebal, K.; Pika, S.; Tomasello, M. doi  openurl
  Title (up) Social communication in siamangs (Symphalangus syndactylus): use of gestures and facial expressions Type Journal Article
  Year 2004 Publication Primates Abbreviated Journal Primates  
  Volume 45 Issue 1 Pages 41-57  
  Keywords Age Factors; *Animal Communication; Animals; Animals, Zoo/*physiology; *Cognition; Female; Hylobates/*physiology; *Kinesics; Male; Sex Factors; *Social Behavior; Video Recording  
  Abstract The current study represents the first systematic investigation of the social communication of captive siamangs (Symphalangus syndactylus). The focus was on intentional signals, including tactile and visual gestures, as well as facial expressions and actions. Fourteen individuals from different groups were observed and the signals used by individuals were recorded. Thirty-one different signals, consisting of 12 tactile gestures, 8 visual gestures, 7 actions, and 4 facial expressions, were observed, with tactile gestures and facial expressions appearing most frequently. The range of the signal repertoire increased steadily until the age of six, but declined afterwards in adults. The proportions of the different signal categories used within communicative interactions, in particular actions and facial expressions, also varied depending on age. Group differences could be traced back mainly to social factors or housing conditions. Differences in the repertoire of males and females were most obvious in the sexual context. Overall, most signals were used flexibly, with the majority performed in three or more social contexts and almost one-third of signals used in combination with other signals. Siamangs also adjusted their signals appropriately for the recipient, for example, using visual signals most often when the recipient was already attending (audience effects). These observations are discussed in the context of siamang ecology, social structure, and cognition.  
  Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. liebal@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-8332 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14655035 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2812  
Permanent link to this record
 

 
Author Whiten, A. openurl 
  Title (up) Social complexity and social intelligence Type Conference Article
  Year 2000 Publication Novartis Foundation Symposium Abbreviated Journal Novartis Found Symp  
  Volume 233 Issue Pages 185-96; discussion 196-201  
  Keywords Animals; Brain/anatomy & histology/*physiology; Humans; *Intelligence/physiology; Learning; Models, Psychological; Primates; *Social Behavior; Social Problems  
  Abstract When we talk of the 'nature of intelligence', or any other attribute, we may be referring to its essential structure, or to its place in nature, particularly the function it has evolved to serve. Here I examine both, from the perspective of the evolution of intelligence in primates. Over the last 20 years, the Social (or 'Machiavellian') Intelligence Hypothesis has gained empirical support. Its core claim is that the intelligence of primates is primarily an adaptation to the special complexities of primate social life. In addition to this hypothesis about the function of intellect, a secondary claim is that the very structure of intelligence has been moulded to be 'social' in character, an idea that presents a challenge to orthodox views of intelligence as a general-purpose capacity. I shall outline the principal components of social intelligence and the environment of social complexity it engages with. This raises the question of whether domain specificity is an appropriate characterization of social intelligence and its subcomponents, like theory of mind. As a counter-argument to such specificity I consider the hypothesis that great apes exhibit a cluster of advanced cognitive abilities that rest on a shared capacity for second-order mental representation.  
  Address School of Psychology, University of St Andrews, St Andrews, Fife KY16 9JU, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-2511 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11276903 Approved no  
  Call Number Serial 2084  
Permanent link to this record
 

 
Author Quaresmini, C.; Forrester, G.S.; Spiezio, C.; Vallortigara, G. doi  openurl
  Title (up) Social environment elicits lateralized behaviors in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes) Type Journal Article
  Year 2014 Publication Journal of Comparative Psychology Abbreviated Journal  
  Volume 128 Issue 3 Pages 276-284  
  Keywords *Animal Ethology; *Animal Social Behavior; *Chimpanzees; *Gorillas; *Social Influences; Cerebral Dominance; Lateral Dominance; Social Environments  
  Abstract The influence of the social environment on lateralized behaviors has now been investigated across a wide variety of animal species. New evidence suggests that the social environment can modulate behavior. Currently, there is a paucity of data relating to how primates navigate their environmental space, and investigations that consider the naturalistic context of the individual are few and fragmented. Moreover, there are competing theories about whether only the right or rather both cerebral hemispheres are involved in the processing of social stimuli, especially in emotion processing. Here we provide the first report of lateralized social behaviors elicited by great apes. We employed a continuous focal animal sampling method to record the spontaneous interactions of a captive zoo-living colony of chimpanzees (Pan troglodytes) and a biological family group of peer-reared western lowland gorillas (Gorilla gorilla gorilla). We specifically focused on which side of the body (i.e., front, rear, left, right) the focal individual preferred to keep conspecifics. Utilizing a newly developed quantitative corpus-coding scheme, analysis revealed both chimpanzees and gorillas demonstrated a significant group-level preference for focal individuals to keep conspecifics positioned to the front of them compared with behind them. More interestingly, both groups also manifested a population-level bias to keep conspecifics on their left side compared with their right side. Our findings suggest a social processing dominance of the right hemisphere for context-specific social environments. Results are discussed in light of the evolutionary adaptive value of social stimulus as a triggering factor for the manifestation of group-level lateralized behaviors. (PsycINFO Database Record (c) 2016 APA, all rights reserved)  
  Address Quaresmini, Caterina: Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy, 38068, caterina.quaresmini@gmail.com  
  Corporate Author Thesis  
  Publisher American Psychological Association Place of Publication Us Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-2087(Electronic),0735-7036(Print) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 2014-13828-001 Serial 6396  
Permanent link to this record
 

 
Author Harcourt, J.L.; Ang, T.Z.; Sweetman, G.; Johnstone, R.A.; Manica, A. url  doi
openurl 
  Title (up) Social feedback and the emergence of leaders and followers Type Journal Article
  Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 19 Issue 3 Pages 248-252  
  Keywords Analysis of Variance; Animals; Appetitive Behavior/physiology; *Feedback; Great Britain; *Leadership; Markov Chains; Models, Biological; Monte Carlo Method; Smegmamorpha/*physiology; *Social Behavior; Video Recording  
  Abstract In many animal groups, certain individuals consistently appear at the forefront of coordinated movements [1-4]. How such leaders emerge is poorly understood [5, 6]. Here, we show that in pairs of sticklebacks, Gasterosteus aculeatus, leadership arises from individual differences in the way that fish respond to their partner's movements. Having first established that individuals differed in their propensity to leave cover in order to look for food, we randomly paired fish of varying boldness, and we used a Markov Chain model to infer the individual rules underlying their joint behavior. Both fish in a pair responded to each other's movements-each was more likely to leave cover if the other was already out and to return if the other had already returned. However, we found that bolder individuals displayed greater initiative and were less responsive to their partners, whereas shyer individuals displayed less initiative but followed their partners more faithfully; they also, as followers, elicited greater leadership tendencies in their bold partners. We conclude that leadership in this case is reinforced by positive social feedback.  
  Address Department of Zoology, University of Cambridge, Cambridge, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19185497 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5123  
Permanent link to this record
 

 
Author Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. url  doi
openurl 
  Title (up) Social intelligence in the spotted hyena (Crocuta crocuta) Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 523-538  
  Keywords Anatomy, Comparative; Animals; Brain/*anatomy & histology; Cercopithecinae/anatomy & histology/*physiology; Decision Making/physiology; Hyaenidae/anatomy & histology/*physiology; *Intelligence; *Recognition (Psychology); *Social Behavior; Species Specificity  
  Abstract If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.  
  Address Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. holekamp@msu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17289649 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4719  
Permanent link to this record
 

 
Author Reader, S.M.; Laland, K.N. doi  openurl
  Title (up) Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
  Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 99 Issue 7 Pages 4436-4441  
  Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior  
  Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.  
  Address Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11891325 Approved no  
  Call Number Serial 2149  
Permanent link to this record
 

 
Author Heyes, C.M. doi  openurl
  Title (up) Social learning in animals: categories and mechanisms Type Journal Article
  Year 1994 Publication Biological reviews of the Cambridge Philosophical Society Abbreviated Journal Biol. Rev.  
  Volume 69 Issue 2 Pages 207-231  
  Keywords Animals; *Behavior, Animal; Conditioning (Psychology); *Learning; Reinforcement (Psychology); *Social Behavior  
  Abstract There has been relatively little research on the psychological mechanisms of social learning. This may be due, in part, to the practice of distinguishing categories of social learning in relation to ill-defined mechanisms (Davis, 1973; Galef, 1988). This practice both makes it difficult to identify empirically examples of different types of social learning, and gives the false impression that the mechanisms responsible for social learning are clearly understood. It has been proposed that social learning phenomena be subsumed within the categorization scheme currently used by investigators of asocial learning. This scheme distinguishes categories of learning according to observable conditions, namely, the type of experience that gives rise to a change in an animal (single stimulus vs. stimulus-stimulus relationship vs. response-reinforcer relationship), and the type of behaviour in which this change is detected (response evocation vs. learnability) (Rescorla, 1988). Specifically, three alignments have been proposed: (i) stimulus enhancement with single stimulus learning, (ii) observational conditioning with stimulus-stimulus learning, or Pavlovian conditioning, and (iii) observational learning with response-reinforcer learning, or instrumental conditioning. If, as the proposed alignments suggest, the conditions of social and asocial learning are the same, there is some reason to believe that the mechanisms underlying the two sets of phenomena are also the same. This is so if one makes the relatively uncontroversial assumption that phenomena which occur under similar conditions tend to be controlled by similar mechanisms. However, the proposed alignments are intended to be a set of hypotheses, rather than conclusions, about the mechanisms of social learning; as a basis for further research in which animal learning theory is applied to social learning. A concerted attempt to apply animal learning theory to social learning, to find out whether the same mechanisms are responsible for social and asocial learning, could lead both to refinements of the general theory, and to a better understanding of the mechanisms of social learning. There are precedents for these positive developments in research applying animal learning theory to food aversion learning (e.g. Domjan, 1983; Rozin & Schull, 1988) and imprinting (e.g. Bolhuis, de Vox & Kruit, 1990; Hollis, ten Cate & Bateson, 1991). Like social learning, these phenomena almost certainly play distinctive roles in the antogeny of adaptive behaviour, and they are customarily regarded as 'special kinds' of learning (Shettleworth, 1993).(ABSTRACT TRUNCATED AT 400 WORDS)  
  Address Department of Psychology, University College London  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1464-7931 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8054445 Approved no  
  Call Number refbase @ user @ Serial 708  
Permanent link to this record
 

 
Author Katz, M.; Lachlan, R.F. doi  openurl
  Title (up) Social learning of food types in zebra finches (Taenopygia guttata) is directed by demonstrator sex and feeding activity Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 1 Pages 11-16  
  Keywords Animals; Color; Diet; *Feeding Behavior; Female; *Learning; Male; Sex Factors; *Social Behavior; *Songbirds  
  Abstract In this study we examined how social learning of feeding preferences by zebra finches was affected by the identity of different demonstrators. We presented adult zebra finches with two demonstrators, one male and one female, that exhibited different food choices, and we recorded their subsequent preference when given a choice between the two food types. Previously it was found that young zebra finches' patterns of social learning are affected by the sex of the individual demonstrating a feeding behaviour. This result could be explained by the lack of exposure these animals had to the opposite sex, or by their mating status. Therefore, we investigated the social learning preferences of adult mated zebra finches. We found the same pattern of directed social learning of a different type of feeding behaviour (food colour): female zebra finches preferred the colour of food eaten by male demonstrators, whereas male zebra finches showed little evidence of any preference for the colour of food eaten by female demonstrators. Furthermore, we found that female observers' preferences were biased by demonstrators' relative feeding activity: the female demonstrator was only ever preferred if it ate less than its male counterpart.  
  Address Institute of Evolutionary and Ecological Science, University of Leiden, Kaiserstraat 63, 2311GP, Leiden, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12658531 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2585  
Permanent link to this record
 

 
Author Hasenjager, M.J.; Dugatkin, L.A. url  doi
openurl 
  Title (up) Social Network Analysis in Behavioral Ecology Type Book Chapter
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Animal personalities; Animal social networks; Collective behavior; Cooperation; Dynamic networks; Emergent properties; Network theory; Social behavior; Social learning; Social structure  
  Abstract Abstract In recent years, behavioral ecologists have embraced social network analysis (SNA) in order to explore the structure of animal societies and the functional consequences of that structure. We provide a conceptual introduction to the field that focuses on historical developments, as well as on novel insights generated by recent work. First, we discuss major advances in the analysis of nonhuman societies, culminating in the use of SNA by behavioral ecologists. Next, we discuss how network-based approaches have enhanced our understanding of social structure and behavior over the past decade, focusing on: (1) information transmission, (2) collective behaviors, (3) animal personality, and (4) cooperation. These behaviors and phenomena possess several features—e.g., indirect effects, emergent properties—that network analysis is well equipped to handle. Finally, we highlight recent developments in SNA that are allowing behavioral ecologists to address increasingly sophisticated questions regarding the structure and function of animal sociality.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Advances in the Study of Behavior Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Hasenjager Serial 5863  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print