|   | 
Details
   web
Records
Author Washburn, D.A.; Astur, R.S.
Title (up) Exploration of virtual mazes by rhesus monkeys (Macaca mulatta) Type Journal Article
Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 6 Issue 3 Pages 161-168
Keywords Animals; Choice Behavior/*physiology; Computer Peripherals; Macaca mulatta/*physiology; Male; Maze Learning/*physiology; Space Perception/*physiology; User-Computer Interface
Abstract A chasm divides the huge corpus of maze studies found in the literature, with animals tested in mazes on the one side and humans tested with mazes on the other. Advances in technology and software have made possible the production and use of virtual mazes, which allow humans to navigate computerized environments and thus for humans and nonhuman animals to be tested in comparable spatial domains. In the present experiment, this comparability is extended even further by examining whether rhesus monkeys (Macaca mulatta) can learn to explore virtual mazes. Four male macaques were trained to manipulate a joystick so as to move through a virtual environment and to locate a computer-generated target. The animals succeeded in learning this task, and located the target even when it was located in novel alleys. The search pattern within the maze for these animals resembled the pattern of maze navigation observed for monkeys that were tested on more traditional two-dimensional computerized mazes.
Address Department of Psychology, Georgia State University, Atlanta, GA 30303, USA. dwashburn@gsu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12750961 Approved no
Call Number Equine Behaviour @ team @ Serial 2569
Permanent link to this record
 

 
Author Gibbs, S.E.B.; Lea, S.E.G.; Jacobs, L.F.
Title (up) Flexible use of spatial cues in the southern flying squirrel (Glaucomys volans) Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 203-209
Keywords Animals; Male; Orientation; *Sciuridae; *Space Perception; *Spatial Behavior
Abstract Insects, birds, and mammals have been shown capable of encoding spatial information in memory using multiple strategies or frames of reference simultaneously. These strategies include orientation to a goal-specific cue or beacon, to the position of the goal in an array of local landmarks, or to its position in the array of distant landmarks, also known as the global frame of reference. From previous experiments, it appears that birds and mammals that scatter hoard rely primarily on a global frame of reference, but this generalization depends on evidence from only a few species. Here we examined spatial memory in a previously unstudied scatter hoarder, the southern flying squirrel. We dissociated the relative weighting of three potential spatial strategies (beacon, global, or relative array strategy) with three probe tests: transposition of beacon and the rotation or the expansion of the array. The squirrels' choices were consistent with a spatial averaging strategy, where they chose the location dictated by at least two of the three strategies, rather than using a single preferred frame of reference. This adaptive and flexible heuristic has not been previously described in animal orientation studies, yet it may be a common solution to the universal problem of encoding and recalling spatial locations in an ephemeral physical landscape.
Address Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17265151 Approved no
Call Number Equine Behaviour @ team @ Serial 2422
Permanent link to this record
 

 
Author Held, S.; Baumgartner, J.; Kilbride, A.; Byrne, R.W.; Mendl, M.
Title (up) Foraging behaviour in domestic pigs (Sus scrofa): remembering and prioritizing food sites of different value Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages 114-121
Keywords Animals; *Appetitive Behavior; *Association Learning; Feeding Behavior/*psychology; Female; *Space Perception; Sus scrofa/*psychology
Abstract This experiment investigated whether domestic pigs can remember the locations of food sites of different relative value, and how a restricted retrieval choice affects their foraging behaviour. Nine juvenile female pigs were trained to relocate two food sites out of a possible eight in a spatial memory task. The two baited sites contained different amounts of food and an obstacle was added to the smaller amount to increase handling time. On each trial, a pig searched for the two baited sites (search visit). Once it had found and eaten the bait, it returned for a second (relocation) visit, in which the two same sites were baited. Baited sites were changed between trials. All subjects learnt the task. When allowed to retrieve both baits, the subjects showed no preference for retrieving a particular one first (experiment 1). When they were allowed to retrieve only one bait, a significant overall preference for retrieving the larger amount emerged across subjects (experiment 2). To test whether this preference reflected an avoidance of the obstacle with the smaller bait, 15 choice-restricted control trials were conducted. In control trials obstacles were present with both baits. Pigs continued to retrieve the larger bait, indicating they had discriminated between the two food sites on the basis of quantity or profitability and adjusted their behaviour accordingly when the relocation choice was restricted. This suggests for the first time that domestic pigs have the ability to discriminate between food sites of different relative value and to remember their respective locations.
Address Department of Clinical Veterinary Science, Centre for Behavioural Biology, University of Bristol, Langford, BS40 5DU, UK. suzanne.held@bris.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15871038 Approved no
Call Number Equine Behaviour @ team @ Serial 2487
Permanent link to this record
 

 
Author Vlasak, A.N.
Title (up) Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus) Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages 71-80
Keywords Animals; Cues; Feeding Behavior/*psychology; Female; *Memory; Mental Recall; Orientation; Sciuridae/*psychology; *Space Perception; *Spatial Behavior
Abstract Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions.
Address Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA. avlasak@sas.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163480 Approved no
Call Number Equine Behaviour @ team @ Serial 2483
Permanent link to this record
 

 
Author Cheng, K.; Wignall, A.E.
Title (up) Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages 141-150
Keywords Animals; Bees/*physiology; Choice Behavior/physiology; *Cues; Memory/*physiology; Perceptual Masking/physiology; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
Address Centre for the Integrative Study of Animal Behaviour and Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia. ken@galliform.bhs.mq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16374626 Approved no
Call Number Equine Behaviour @ team @ Serial 2477
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G.
Title (up) How fish do geometry in large and in small spaces Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 47-54
Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception
Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.
Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16794851 Approved no
Call Number Equine Behaviour @ team @ Serial 2462
Permanent link to this record
 

 
Author Shettleworth, S.J.; Krebs, J.R.
Title (up) How marsh tits find their hoards: the roles of site preference and spatial memory Type Journal Article
Year 1982 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 8 Issue 4 Pages 354-375
Keywords Animals; *Appetitive Behavior; Birds; Cues; Discrimination Learning; *Memory; *Mental Recall; *Orientation; *Space Perception
Abstract Marsh tits (Parus palustris) store single food items in scattered locations and recover them hours or days later. Some properties of the spatial memory involved were analyzed in two laboratory experiments. In the first, marsh tits were offered 97 sites for storing 12 seeds. They recovered a median of 65% of them 2-3 hr later, making only two errors per seed while doing so. Over trials, they used some sites more often than others, but during recovery they were more likely to visit a site of any preference value if they had stored a seed there that day than if they had not. Recovery performance was much worse if the experimenters moved the seeds between storage and recovery. A fixed search strategy that had some of the same average properties as the tits' search behavior also did worse than the real birds. In Experiment 2, any tendency to visit the same sites on successive daily tests in the aviary was placed in opposition to memory for storage sites by allowing the tits to store more seeds 2 hr after storing a first batch. They tended to avoid individual storage sites holding seeds from the first batch. When the tits searched for all the seeds 2 hr later, they tended to recover more seeds from the second batch than from the first, i.e., there was a recency effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:7175447 Approved no
Call Number refbase @ user @ Serial 385
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G.
Title (up) Integration of spatial maps in pigeons Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages 7-16
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology
Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15221636 Approved no
Call Number Equine Behaviour @ team @ Serial 2521
Permanent link to this record
 

 
Author Sutton, J.E.; Shettleworth, S.J.
Title (up) Internal sense of direction and landmark use in pigeons (Columba livia) Type Journal Article
Year 2005 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 119 Issue 3 Pages 273-284
Keywords Animals; *Columbidae; Conflict (Psychology); *Cues; Discrimination Learning; Homing Behavior; *Intuition; *Orientation; *Space Perception; Transfer (Psychology); *Visual Perception
Abstract The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable.
Address Department of Psychology, University of Toronto, ON, Canada. jsutton7@uwo.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:16131256 Approved no
Call Number refbase @ user @ Serial 360
Permanent link to this record
 

 
Author Fiset, S.; Leblanc, V.
Title (up) Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 211-224
Keywords Animals; Dogs/*physiology; Female; Male; *Space Perception; *Spatial Behavior; *Visual Perception
Abstract Recently, (Collier-Baker E, Davis JM, Suddendorf T (2004) J Comp Psychol 118:421-433) suggested that domestic dogs do not understand invisible displacements. In the present study, we further investigated the hypothesis that the search behavior of domestic dogs in invisible displacements is guided by various visual cues inherent to the task rather than by mental representation of an object's past trajectory. Specifically, we examined the role of the experimenter as a function of the final position of the displacement device in the search behavior of domestic dogs. Visible and invisible displacement problems were administered to dogs (N = 11) under two conditions. In the Visible-experimenter condition, the experimenter was visible whereas in the Concealed-experimenter condition, the experimenter was visibly occluded behind a large rigid barrier. Our data supported the conclusion that dogs do not understand invisible displacements but primarily search as a function of the final position of the displacement device and, to a lesser extent, the position of the experimenter.
Address Secteur Sciences Humaines, Universite de Moncton, Campus d'Edmundston, Edmundston, New-Brunswick, E3V 2S8, Canada. sfiset@umce.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17165041 Approved no
Call Number Equine Behaviour @ team @ Serial 2430
Permanent link to this record