|   | 
Details
   web
Records
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S.
Title (up) Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 707-711
Keywords Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing
Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656501 Approved no
Call Number Equine Behaviour @ team @ Serial 3656
Permanent link to this record
 

 
Author Kraus-Hansen, A.E.; Fackelman, G.E.; Becker, C.; Williams, R.M.; Pipers, F.S.
Title (up) Preliminary studies on the vascular anatomy of the equine superficial digital flexor tendon Type Journal Article
Year 1992 Publication Equine veterinary journal Abbreviated Journal Equine Vet J
Volume 24 Issue 1 Pages 46-51
Keywords Angiography/veterinary; Animals; Exercise Test/veterinary; Forelimb; Horses/*anatomy & histology/surgery; Microcirculation; Microscopy, Electron, Scanning; Tendons/*blood supply/surgery/ultrastructure
Abstract The vascular and microvascular anatomy of normal equine superficial digital flexor tendons was studied by dissection of vinyl-perfused specimens and by microangiography on high detail film. The presence of an extensive intratendinous vascular latticework was confirmed, and a 'nutrient artery' described closely associated with the accessory ligament of the superficial digital flexor tendon (proximal check ligament). Circumferential stripping of the paratenon from the tendon to eliminate afferent vessels was performed bilaterally in three horses and unilaterally in a fourth, followed by a treadmill training regimen. No resulting intratendinous lesions could be documented on gross post mortem and histological examination at three, 10, or 35 days post operatively. There was mild paratendinous proliferation in all instances. In one horse, four intratendinous ligatures were placed within the medial and lateral borders of the contralateral tendon to isolate further from its blood supply a 10 cm segment. Gross lesions at 35 days post operatively included a marked paratendinous response involving the entire 10 cm segment, and a darkened, soft focus within the core of the tendon. Histopathology and electron microscopy demonstrated focal degeneration. It was concluded that the blood supply of the normal equine superficial digital flexor tendon is primarily intratendinous, rather than paratendinous as previously thought. The lesions in one horse similar to those in naturally occurring tendinitis supported a vascular aetiology of the disease, and set the groundwork for studies aimed at the development of a clinically relevant tendinitis model.
Address Department of Surgery, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:1555540 Approved no
Call Number refbase @ user @ Serial 151
Permanent link to this record
 

 
Author Robert, C.; Valette, J.P.; Denoix, J.M.
Title (up) The effects of treadmill inclination and speed on the activity of three trunk muscles in the trotting horse Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 5 Pages 466-472
Keywords Animals; Biomechanics; Electromyography/methods/veterinary; Exercise Test/veterinary; Gait/physiology; Horses/*physiology; Muscle, Skeletal/*physiology; Physical Conditioning, Animal; Rectus Abdominis/physiology; Time Factors
Abstract The purpose of this study was to evaluate the effects of speed and slope on the activity of trunk muscles. The electromyographic (EMG) activity of the splenius (Sp), longissimus dorsi (LD) and rectus abdominis (RA) muscles was recorded with surface electrodes during treadmill locomotion at trot for different combinations of speed (3.5 to 6 m/s) and slope (0 to 6%). Raw EMG signals were processed to determine activity duration, onset and end and integrated EMG (IEMG). For the 3 muscles investigated, onset and end of activity were obtained earlier in the stride cycle when speed increased. A longer duration of activity for the LD, a shorter duration for the RA and an unchanged duration for the Sp were also observed. The IEMG of the latter was poorly affected by speed, whereas it increased linearly with speed for the 2 other muscles. When treadmill inclination changed from 0 to 6%, EMG activity of the LD and RA began and ended later; a longer activity duration was noted. Temporal parameters for Sp did not change with slope. A significant and progressive increase in the IEMG of the 3 muscles was observed with increasing slope. This evaluation of the activity of trunk muscles provides objective data for the use of speed or slope in training programmes.
Address UMR INRA-DGER, Biomecanique et Pathalogie Locomotrice du Cheval, UP Anatomie, Ecole Nationale Veterinaire d'Alfort, Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:11558741 Approved no
Call Number Equine Behaviour @ team @ Serial 4052
Permanent link to this record
 

 
Author Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S.
Title (up) The influence of head and neck position on kinematics of the back in riding horses at the walk and trot Type Journal Article
Year 2005 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 37 Issue 1 Pages 7-11
Keywords Acceleration; Animals; Back/*physiology; Biomechanics; Exercise Test/veterinary; Female; Gait/*physiology; Head/*physiology; Horses/*physiology; Male; Movement/physiology; Neck/*physiology; Walking/physiology
Abstract REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.
Address Department of Anatomy, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15651727 Approved no
Call Number Equine Behaviour @ team @ Serial 3657
Permanent link to this record
 

 
Author Davies, H.M.S.
Title (up) The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse Type Journal Article
Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J
Volume 83 Issue 3 Pages 157-162
Keywords Animals; Exercise Test/veterinary; Female; Gait/*physiology; Horses/*physiology; Metacarpus/*physiology; Motor Activity/physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/physiology
Abstract OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.
Address Department of Veterinary Science, University of Melbourne, Parkville, Victoria 3010. h.davies@unimelb.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0005-0423 ISBN Medium
Area Expedition Conference
Notes PMID:15825628 Approved no
Call Number Serial 1891
Permanent link to this record
 

 
Author Hada, T.; Ohmura, H.; Mukai, K.; Eto, D.; Takahashi, T.; Hiraga, A.
Title (up) Utilisation of the time constant calculated from heart rate recovery after exercise for evaluation of autonomic activity in horses Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 141-145
Keywords Animals; Atropine/pharmacology; Autonomic Nervous System/drug effects/*physiology; Exercise Test/veterinary; Female; Heart Rate/*physiology; Horses/*physiology; Male; Oxygen Consumption/*physiology; Parasympatholytics/*pharmacology; Physical Conditioning, Animal/*physiology; Physical Fitness/physiology; Propranolol/pharmacology
Abstract REASONS FOR PERFORMING STUDY: Heart rate (HR) recovery immediately after exercise is controlled by autonomic functions and the time constant (T) calculated from HR recovery is thought to be an index of parasympathetic activity in man. OBJECTIVES: To investigate whether it is possible to evaluate autonomic function using the time constant in horses. METHODS: Five Thoroughbred horses were subjected to a standard exercise test. Following pre-medication with saline, atropine and/or propranolol, the horses ran for 2.5 min at a speed of 8 m/sec at a 10% incline and T was calculated from HR after the exercise. Secondly, 7 Thoroughbred horses were then trained for 11 weeks and T and maximal oxygen uptake (VO2max) measured at intervals of 1 or 2 weeks. In 6 horses, T with atropine pre-medication was also measured before and after the whole training period. Furthermore, the HR variability at rest was evaluated by power spectral analysis at intervals of 3 or 4 weeks. RESULTS: Time constant was increased by atropine and/or propranolol pre-medication, decreased with the progress of training and inversely correlated with VO2max during training (r = 0.43, P<0.005). Parasympathetic blockade significantly decreased T only after and not before, the training; however, T was lower in post training than in pretraining, irrespective of parasympathetic blockade. On the other hand, parasympathetic activity at rest was attenuated and sympathetic activity became predominant following the training. CONCLUSION: Heart rate recovery is affected by sympathetic withdrawal and parasympathetic reactivation in horses and suggests that physical training hastened HR recovery by improving the parasympathetic function after exercise with aerobic capacity. However, the effects of other factors need to be considered because the training effect appeared on T even under parasympathetic blockade. The parasympathetic activity at rest is in contrast to that after exercise, suggesting that T does not reflect parasympathetic activity at rest. POTENTIAL RELEVANCE: If demonstrated how HR recovery is controlled after exercise, its analysis will be important in the evaluation of physical fitness in horses.
Address Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, 535-13 Nischicha, Urakawa-cho, Uraakawagun, Hokkaido, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402409 Approved no
Call Number Equine Behaviour @ team @ Serial 4010
Permanent link to this record