|   | 
Details
   web
Records
Author Reboreda, J.C.; Clayton, N.S.; Kacelnik, A.
Title (up) Species and sex differences in hippocampus size in parasitic and non-parasitic cowbirds Type Journal Article
Year 1996 Publication Neuroreport Abbreviated Journal Neuroreport
Volume 7 Issue 2 Pages 505-508
Keywords Animals; Birds/*physiology; Female; Hippocampus/*anatomy & histology; Male; Nesting Behavior/*physiology; Sex Characteristics; Species Specificity; Telencephalon/anatomy & histology
Abstract To test the hypothesis that selection for spatial abilities which require birds to locate and to return accurately to host nests has produced an enlarged hippocampus in brood parasites, three species of cowbird were compared. In shiny cowbirds, females search for host nests without the assistance of the male; in screaming cowbirds, males and females inspect hosts' nests together; in bay-winged cowbirds, neither sex searches because this species is not a brood parasite. As predicted, the two parasitic species had a relatively larger hippocampus than the non-parasitic species. There were no sex differences in relative hippocampus size in screaming or bay-winged cowbirds, but female shiny cowbirds had a larger hippocampus than the male.
Address Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-4965 ISBN Medium
Area Expedition Conference
Notes PMID:8730816 Approved no
Call Number Equine Behaviour @ team @ Serial 4798
Permanent link to this record
 

 
Author Griffiths, D.P.; Clayton, N.S.
Title (up) Testing episodic memory in animals: A new approach Type Journal Article
Year 2001 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 73 Issue 5 Pages 755-762
Keywords Episodic memory; Food-caching; Animal models
Abstract Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory “receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events.” Thus, episodic memory provides information about the `what' and `when' of events (`temporally dated experiences') and about `where' they happened (`temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 401
Permanent link to this record
 

 
Author Emery, N.J.; Clayton, N.S.
Title (up) The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes Type Journal Article
Year 2004 Publication Science Abbreviated Journal Science
Volume 306 Issue 5703 Pages 1903-1907
Keywords
Abstract Discussions of the evolution of intelligence have focused on monkeys and apes because of their close evolutionary relationship to humans. Other large-brained social animals, such as corvids, also understand their physical and social worlds. Here we review recent studies of tool manufacture, mental time travel, and social cognition in corvids, and suggest that complex cognition depends on a “tool kit” consisting of causal reasoning, flexibility, imagination, and prospection. Because corvids and apes share these cognitive tools, we argue that complex cognitive abilities evolved multiple times in distantly related species with vastly different brain structures in order to solve similar socioecological problems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1126/science.1098410 Approved no
Call Number Equine Behaviour @ team @ Serial 2959
Permanent link to this record
 

 
Author Emery, N.J.; Dally, J.M.; Clayton, N.S.
Title (up) Western scrub-jays ( Aphelocoma californica) use cognitive strategies to protect their caches from thieving conspecifics Type Journal Article
Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 1 Pages 37-43
Keywords Animals; Birds/*physiology; Feeding Behavior/*physiology; Female; *Food; Male; *Memory
Abstract Food caching birds hide food and recover the caches when supplies are less abundant. There is, however, a risk to this strategy because the caches are susceptible to pilfering by others. Corvids use a number of different strategies to reduce possible cache theft. Scrub-jays with previous experience of pilfering other's caches cached worms in two visuospatially distinct caching trays either in private or in the presence of a conspecific. When these storers had cached in private, they subsequently observed both trays out of reach of a conspecific. When these storers had cached in the presence of a conspecific, they subsequently watched the observer pilfering from one of the trays while the other tray was placed in full view, but out of reach. The storers were then allowed to recover the remaining caches 3 h later. Jays cached more worms when they were observed during caching. At the time of recovery, they re-cached more than if they had cached in private, selectively re-caching outside of the trays in sites unbeknown to potential thieves. In addition, after a single pilfering trial, the jays switched their recovery strategy from predominantly checking their caches (i.e. returning to a cache site to see whether the food remained there) to predominantly eating them. Re-caching remained constant across the three trials. These results suggest that scrub-jays use flexible, cognitive caching and recovery strategies to aid in reducing potential future pilfering of caches by conspecifics.
Address Sub-department of Animal Behaviour, University of Cambridge, High Street, CB3 8AA Madingley, Cambs, UK. nje23@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12827547 Approved no
Call Number Equine Behaviour @ team @ Serial 2566
Permanent link to this record