toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Viscido, S.V.; Miller, M.; Wethey, D.S. doi  openurl
  Title (down) The response of a selfish herd to an attack from outside the group perimeter Type Journal Article
  Year 2001 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 208 Issue 3 Pages 315-328  
  Keywords Animals; *Behavior, Animal; *Computer Simulation; Models, Biological; *Movement; Predatory Behavior  
  Abstract According to the selfish herd hypothesis, animals can decrease predation risk by moving toward one another if the predator can appear anywhere and will attack the nearest target. Previous studies have shown that aggregations can form using simple movement rules designed to decrease each animal's Domain of Danger. However, if the predator attacks from outside the group's perimeter, these simple movement rules might not lead to aggregation. To test whether simple selfish movement rules would decrease predation risk for those situations when the predator attacks from outside the flock perimeter, we constructed a computer model that allowed flocks of 75 simulated fiddler crabs to react to one another, and to a predator attacking from 7 m away. We attacked simulated crab flocks with predators of different sizes and attack speeds, and computed relative predation risk after 120 time steps. Final trajectories showed flight toward the center of the flock, but curving away from the predator. Path curvature depended on the predator's size and approach speed. The average crab experienced a greater decrease in predation risk when the predator was small or slow moving. Regardless of the predator's size and speed, however, predation risk always decreased as long as crabs took their flock-mates into account. We conclude that, even when flight away from an external predator occurs, the selfish avoidance of danger can lead to aggregation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11207093 Approved no  
  Call Number refbase @ user @ Serial 555  
Permanent link to this record
 

 
Author Hamilton, W.D. doi  openurl
  Title (down) The genetical evolution of social behaviour. I Type Journal Article
  Year 1964 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 7 Issue 1and 2 Pages 1-52  
  Keywords *Behavior; *Genetics; Humans; *Models, Theoretical  
  Abstract A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing property of Darwinian fitness. This quantity is named “inclusive fitness”. Species following the model should tend to evolve behaviour such that each organism appears to be attempting to maximize its inclusive fitness. This implies a limited restraint on selfish competitive behaviour and possibility of limited self-sacrifices.

Special cases of the model are used to show (a) that selection in the social situations newly covered tends to be slower than classical selection, (b) how in populations of rather non-dispersive organisms the model may apply to genes affecting dispersion, and (c) how it may apply approximately to competition between relatives, for example, within sibships. Some artificialities of the model are discussed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5875341 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5160  
Permanent link to this record
 

 
Author Dugatkin, L.A.; Perlin, M.; Atlas, R. url  doi
openurl 
  Title (down) The Evolution of Group-beneficial Traits in the Absence of Between-group Selection Type Journal Article
  Year 2003 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 220 Issue 1 Pages 67-74  
  Keywords  
  Abstract One specific prediction emerging from trait-group models of natural selection is that when individuals possess traits that benefit other group members, natural selection will favor “cheating” (i.e. not possessing the group-beneficial trait) within groups. Cheating is selected within groups because it allows individuals to avoid bearing the relative costs typically associated with group-beneficial traits, but to still reap the benefits associated with the acts of other group members. Selection between groups favors traits that benefit other group members. The relative strength of within- and between-group selection then determines the equilibrium frequency of those who produce group-beneficial traits and those that do not. Here we demonstrate that individual-level selection, that is selection within groups can also produce an intermediate frequency of such group-beneficial traits by frequency-dependent selection. The models we develop are general in nature, but were inspired by the evolution of antibiotic resistance in bacteria. The theory developed here is distinct from prior work that relies on reciprocity or kinship per'se to achieve cooperation and altruism among group members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 491  
Permanent link to this record
 

 
Author Gueron, S.; Levin, S.A.; Rubenstein, D.I. url  doi
openurl 
  Title (down) The Dynamics of Herds: From Individuals to Aggregations Type Journal Article
  Year 1996 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 182 Issue 1 Pages 85-98  
  Keywords  
  Abstract The dynamic behavior of small herds is investigated by means of simulations of two-dimensional discrete-stochastic models. An individual-based approach is used to relate collective behavior to individual decisions. In our model, the motion of an individual in a herd is assumed to be the combined result of both density-independent and density-dependent decisions, in the latter case based on the influence of surrounding neighbors; assumed decision rules are hierarchical, balancing short range repulsion against long-range attraction. The probability of fragmentation of the model herd depends on parameter values. We explore the variety and characteristics of spatial patterns that develop during migration, for herds that are homogeneous and heterogeneous regarding intrinsic walking speeds. Group integrity can be maintained even in mixed populations, but fragmentation results for these more easily than for a homogeneous herd. Observations of natural populations suggest that animals move away from individuals that intrude too closely into their environment, but are attracted to individuals at a distance. Between these extremes, there appears to be a neutral zone, within which other individuals engender no response. We explore the importance of this neutral zone, and offer evolutionary interpretations. In particular, the neutral zone, if not too large, permits the individual to remain in contact with the herd, while reducing the frequency with which acceleration or deceleration must be undertaken. This offers obvious energetic benefits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5253  
Permanent link to this record
 

 
Author Viscido, S.V.; Miller, M.; Wethey, D.S. openurl 
  Title (down) The dilemma of the selfish herd: the search for a realistic movement rule Type Journal Article
  Year 2002 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 217 Issue 2 Pages 183-194  
  Keywords Animals; *Behavior, Animal; *Mass Behavior; Models, Biological; *Motor Activity; Predatory Behavior  
  Abstract The selfish herd hypothesis predicts that aggregations form because individuals move toward one another to minimize their own predation risk. The “dilemma of the selfish herd” is that movement rules that are easy for individuals to follow, fail to produce true aggregations, while rules that produce aggregations require individual behavior so complex that one may doubt most animals can follow them. If natural selection at the individual level is responsible for herding behavior, a solution to the dilemma must exist. Using computer simulations, we examined four different movement rules. Relative predation risk was different for all four movement rules (p<0.05). We defined three criteria for measuring the quality of a movement rule. A good movement rule should (a) be statistically likely to benefit an individual that follows it, (b) be something we can imagine most animals are capable of following, and (c) result in a centrally compact flock. The local crowded horizon rule, which allowed individuals to take the positions of many flock-mates into account, but decreased the influence of flock-mates with distance, best satisfied these criteria. The local crowded horizon rule was very sensitive to the animal's perceptive ability. Therefore, the animal's ability to detect its neighbors is an important factor in the dynamics of group formation.  
  Address Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA. viscido@u.washington.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12202112 Approved no  
  Call Number refbase @ user @ Serial 554  
Permanent link to this record
 

 
Author Reluga, T.C.; Viscido, S. doi  openurl
  Title (down) Simulated evolution of selfish herd behavior Type Journal Article
  Year 2005 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 234 Issue 2 Pages 213-225  
  Keywords Selfish herd; Behavior; Evolution; Predation risk  
  Abstract Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 553  
Permanent link to this record
 

 
Author Fishman, M.A. url  doi
openurl 
  Title (down) Predator Inspection: Closer Approach as a Way to Improve Assessment of Potential Threats Type Journal Article
  Year 1999 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 196 Issue 2 Pages 225-235  
  Keywords  
  Abstract When detecting a predator, some prey animals respond in a counterintuitive fashion by approaching, rather than fleeing, that potential threat of extinction. This seemingly paradoxical behaviour, known aspredator inspection, has been reported for a wide variety of taxa--and therefore can be assumed to be adaptive. However, the view of predator inspection as a paradoxical behaviour rests on two implicit assumptions: (a) initial predator detecting is unambiguous, with no uncertainty in discriminating between hunting and non hunting members of predator species, or members of predator species and unrelated phenomena; (b) the costs of flight are negligible relative to the risk of predation. Upon reflection assumption (a) is not really tenable. Whereas assumption (b) is not consistent with experimental evidence [Godin & Crossman (1994)Behav. Ecol. Sociobiol.34,359-366]. Given that predator detection is ambiguous and the costs of flight are not negligible, a prey individual may benefit by a closer approach to the source of the alarming signals, thus improving its assessment of the situation--despite the increased risk of predation. In this paper, the above statement is given rigor by reformulating the problem in game theoretical terms. The results indicate that a prey will minimize its costs by performing predator inspection whenever its degree of certainty regarding predator identification and/or assessment of its intentions is less than a threshold, which is determined by the model's parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 523  
Permanent link to this record
 

 
Author Mesterton-Gibbons, M.; Gavrilets, S.; Gravner, J.; Akçay, E. url  doi
openurl 
  Title (down) Models of coalition or alliance formation Type Journal Article
  Year 2011 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 274 Issue 1 Pages 187-204  
  Keywords Game theory; Cooperation  
  Abstract More than half a century has now elapsed since coalition or alliance formation theory (CAFT) was first developed. During that time, researchers have amassed a vast amount of detailed and high-quality data on coalitions or alliances among primates and other animals. But models have not kept pace, and more relevant theory is needed. In particular, even though CAFT is primarily an exercise in polyadic game theory, game theorists have devoted relatively little attention to questions that motivate field research, and much remains largely unexplored. The state of the art is both a challenge and an opportunity. In this review we describe a variety of game-theoretic and related modelling approaches that have much untapped potential to address the questions that field biologists ask.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5322  
Permanent link to this record
 

 
Author Broom, M.; Cannings, C. url  doi
openurl 
  Title (down) Modelling Dominance Hierarchy formation as a Multi-player game Type Journal Article
  Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 219 Issue 3 Pages 397-413  
  Keywords  
  Abstract Animals who live in groups need to divide available resources amongst themselves. This is often achieved by means of a dominance hierarchy, where dominant individuals obtain a larger share of the resources than subordinate individuals. This paper introduces a model of dominance hierarchy formation using a multi-player extension of the classical Hawk-Dove game. Animals play non-independent pairwise games in a Swiss tournament which pairs opponents against those which have performed equally well in the conflict so far, for a fixed number of rounds. Resources are divided according to the number of contests won. The model, and its emergent properties, are discussed in the context of experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 450  
Permanent link to this record
 

 
Author Hamilton, W.D. doi  openurl
  Title (down) Geometry for the selfish herd Type Journal Article
  Year 1971 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 31 Issue 2 Pages 295-311  
  Keywords Animals; Anura; *Behavior, Animal; Breeding; Communication; Evolution; Fear; Metallurgy; *Models, Biological; Probability; Snakes; *Spatial Behavior  
  Abstract This paper presents an antithesis to the view that gregarious behaviour is evolved through benefits to the population or species. Following Galton (1871) and Williams (1964) gregarious behaviour is considered as a form of cover-seeking in which each animal tries to reduce its chance of being caught by a predator.

It is easy to see how pruning of marginal individuals can maintain centripetal instincts in already gregarious species; some evidence that marginal pruning actually occurs is summarized. Besides this, simply defined models are used to show that even in non-gregarious species selection is likely to favour individuals who stay close to others.

Although not universal or unipotent, cover-seeking is a widespread and important element in animal aggregation, as the literature shows. Neglect of the idea has probably followed from a general disbelief that evolution can be dysgenic for a species. Nevertheless, selection theory provides no support for such disbelief in the case of species with outbreeding or unsubdivided populations.

The model for two dimensions involves a complex problem in geometrical probability which has relevance also in metallurgy and communication science. Some empirical data on this, gathered from random number plots, is presented as of possible heuristic value.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:5104951 Approved no  
  Call Number refbase @ user @ Serial 771  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print