|   | 
Details
   web
Records
Author Brennan, P.A.
Title (up) The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav
Volume 46 Issue 3 Pages 231-240
Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology
Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.
Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-506X ISBN Medium
Area Expedition Conference
Notes PMID:15325224 Approved no
Call Number Equine Behaviour @ team @ Serial 4191
Permanent link to this record
 

 
Author Penn, D.; Potts, W.K.
Title (up) Untrained mice discriminate MHC-determined odors Type Journal Article
Year 1998 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 64 Issue 3 Pages 235-243
Keywords Major histocompatibility complex; Pheromones; Olfaction; Kin recognition; Sexual selection
Abstract PENN, D. AND W. K. POTTS. Untrained mice distinguish MHC-determined odors. PHYSIOL BEHAV 64(3) 235-243, 1998.--Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4418
Permanent link to this record