|   | 
Details
   web
Records
Author Güntürkün, O.; Kesch, S.
Title (down) Visual lateralization during feeding in pigeons Type Journal Article
Year 1987 Publication Behavioral Neuroscience Abbreviated Journal Behav. Neurosci.
Volume 101 Issue 3 Pages 433-435
Keywords use of right vs left eye, amount & accuracy of pecking in food discrimination task, homing pigeons, implications for lateralization of cerebral function
Abstract In a quasi-natural feeding situation, adult pigeons had to detect and consume 30 food grains out of about 1,000 pebbles of similar shape, size, and color within 30 s under monocular conditions. With the right eye seeing, the animals achieved a significantly higher discrimination accuracy and, consequently, a significantly higher proportion of grains grasped than with the left eye seeing. This result supports previous demonstrations of a left-hemisphere dominance for visually guided behavior in birds. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Address
Corporate Author Thesis
Publisher US: American Psychological Association Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-0084(Electronic);0735-7044(Print) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ 1987-30501-001 Serial 5588
Permanent link to this record
 

 
Author Batt, L.S.; Batt, M.S.; Baguley, J.A.; McGreevy, P.D.
Title (down) The relationships between motor lateralization, salivary cortisol concentrations and behavior in dogs Type Journal Article
Year 2009 Publication Journal of Veterinary Behaviour Abbreviated Journal
Volume 4 Issue 6 Pages 216-222
Keywords Dog; temperament; motor lateralization; cortisol; behavior; cortisol EIA
Abstract The degree of lateralization (LI) indicates both the direction and strength of a paw preference. Here, a positive value is indicative of a right paw bias, and a negative value of a left paw bias. Higher numbers on the positive side of the scale and lower numbers on the negative side of the scale indicate a greater strength of that lateralization. The strength of motor lateralization (|LI|) is the absolute value of the LI. The use of absolute value removes directionality (i.e., does not indicate left or right paw bias) and instead indicates only the strength of the paw preference. Both LI and |LI| have been associated with behavioral differences in a range of species. The assessment of motor lateralization in the dog can be conducted by observing the paw used to perform motor tasks. Elevated cortisol concentrations have been associated with fearfulness in many species. Additionally, fearfulness and boldness can be assessed in response to so-called temperament tests. Consequently, in this study we examine the relationship between lateralization, temperament test results, and cortisol concentrations in 43 potential guide dogs, of which 38 were Labrador retrievers and 5 were golden retrievers. Over a 14-month period, the current study assessed motor lateralization and salivary cortisol concentrations 3 times (approximately 6 months of age, 14 months of age, and after the dogs' performance in the guide dog program had been determined) and behavior twice (approximately 6 and 14 months of age). This study is the first to examine the relationship between behavior, lateralization, and cortisol concentrations in dogs. It implemented an objective and quantifiable assessment of behavior that may be of use to a variety of dog-focused stakeholders. Findings show that during the Juvenile testing period (6 months of age), dogs with higher cortisol concentrations were typically less able to rest when exposed to the unfamiliar testing room. Results from both Juvenile and Adult Test (14 months of age) periods showed that a greater |LI| and LI were associated with more confident and relaxed behavior when dogs were exposed to novel stimuli and unfamiliar environments. Significant elevations of cortisol concentrations were found at the completion of guide dog training when compared with results from the 2 prior test periods. This finding may reflect maturation or the effect of the prolonged kenneling which occurred during this period.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-7878 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ S1558-7878(09)00017-3 Serial 5383
Permanent link to this record
 

 
Author Zucca, P.; Cerri, F.; Carluccio, A.; Baciadonna, L.
Title (down) Space availability influence laterality in donkeys (Equus asinus) Type Journal Article
Year Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume In Press, Uncorrected Proof Issue Pages
Keywords Cerebral lateralization; Donkey; Footedness; Welfare; Equus asinus
Abstract Cerebral lateralization is the portioning of the cognitive functions between the two cerebral hemispheres. Several factors, like embryological manipulations, light exposure, health conditions, sex and age can influence the left-right brain asymmetries and contribute to increasing the variability in the strength and direction of laterality within most species. We investigated the influence of an environmental constraint, namely space availability, as a new source of variation on laterality in an adult vertebrate model, the donkey. In a baseline condition we tested whether donkeys show a motor lateralization bias at population level, while in an experimental condition we manipulated space availability to verify if a reduction in this parameter could represent a new source of variation in laterality. Results show that donkeys are lateralized at population level with a strong bias to standing with the right forelimb advanced over the left and that a reduction of space availability is an important source of variation in the laterality strength and direction within this species. The comparative analysis of the environmental and developmental factors that give origin to neural and behavioural laterality in animal models will be very important for a better understanding of the evolutionary origin of such multifaceted phenomenon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5400
Permanent link to this record
 

 
Author da Cruz, A.B.; Hirata, S.; dos Santos, M.E.; Mendonça, R.S.
Title (down) Show me your best side: Lateralization of social and resting behaviors in feral horses Type Journal Article
Year 2023 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 206 Issue Pages 104839
Keywords Cerebral lateralization; Drone technology; ; Hemispheric specialization; Horses; Social interactions
Abstract Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) – left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6697
Permanent link to this record
 

 
Author da Cruz, A.B.; Hirata, S.; dos Santos, M.E.; Mendonça, R.S.
Title (down) Show me your best side: Lateralization of social and resting behaviors in feral horses Type Journal Article
Year 2023 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 206 Issue Pages 104839
Keywords Cerebral lateralization; Drone technology; ; Hemispheric specialization; Horses; Social interactions
Abstract Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) – left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6711
Permanent link to this record
 

 
Author Tomkins, L.M.; Williams, K.A.; Thomson, P.C.; McGreevy, P.D.
Title (down) Sensory Jump Test as a measure of sensory (visual) lateralization in dogs (Canis familiaris) Type Journal Article
Year 2010 Publication Journal of Veterinary Behavior Abbreviated Journal
Volume 5 Issue 5 Pages 256-267
Keywords sensory lateralization; monocular vision; binocular vision; jump kinematics; dog
Abstract Sensory lateralization in dogs (n = 74) was investigated in this study using our innovation, the Sensory Jump Test. This required the modification of head halters to create three different ocular treatments (binocular, right, and left monocular vision) for eye preference assessment in a jumping task. Ten jumps were recorded as a jump set for each treatment. Measurements recorded included (i) launch and landing paws, (ii) type of jump, (iii) approach distance, (iv) clearance height of the forepaw, hindpaw, and the lowest part of the body to clear the jump, and (v) whether the jump was successful. Factors significantly associated with these jump outcomes included ocular treatment, jump set number, and replication number. Most notably, in the first jump set, findings indicated a left hemispheric dominance for the initial navigation of the Sensory Jump Test, as left monocular vision (LMV) compromised of jumping more than right monocular (RMV) and binocular vision, with a significantly reduced approach distance and forepaw clearance observed in dogs with LMV. However, by the third jump set, dogs undergoing LMV launched from a greater approach distance and with a higher clearance height, corresponding to an increase in success rate of the jump, in comparison with RMV and binocular vision dogs. A marginally non-significant RMV bias was observed for eye preference based on the laterality indices for approach distance (P = 0.060) and lowest body part clearance height (P = 0.067). A comparison between eye preference and launching or landing paws showed no association between these measures of sensory and motor laterality. To our knowledge, this is the first study to report on sensory lateralization in the dog, and furthermore, to compare both motor and sensory laterality in dogs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-7878 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ S1558-7878(10)00019-5 Serial 5379
Permanent link to this record
 

 
Author Branson, N.J.; Rogers, L.J.
Title (down) Relationship between paw preference strength and noise phobia in Canis familiaris Type Journal Article
Year 2006 Publication Journal of Comparative Psychology Abbreviated Journal J. Comp. Psychol.
Volume 120 Issue 3 Pages 176-183
Keywords noise phobia; lateralization; paw preference; dog; fear
Abstract The authors investigated the relationship between degree of lateralization and noise phobia in 48 domestic dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to reactivity to the sounds of thunderstorms and fireworks, measured by playback and a questionnaire. The dogs without a significant paw preference were significantly more reactive to the sounds than the dogs with either a left-paw or right-paw preference. Intense reactivity, therefore, is associated with a weaker strength of cerebral lateralization. The authors note the similarity between their finding and the weaker hand preferences shown in humans suffering extreme levels of anxiety and suggest neural mechanisms that may be involved. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Address Branson, N. J.: Centre for Neuroscience and Animal Behavior, School of Biological, Biomedical and Molecular Sciences, University of New England, Armidale, NSW, Australia, nbranson@une.edu.au
Corporate Author Thesis
Publisher US: American Psychological Association Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-2087 (Electronic); 0735-7036 (Print) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ 2006-09888-002 Serial 5384
Permanent link to this record
 

 
Author Jennings, D.J.
Title (down) Limited evidence that visual lateralization is associated with fitness in rutting male fallow deer Type Journal Article
Year 2014 Publication Animal Behaviour Abbreviated Journal Anim. Behav.
Volume 92 Issue Pages 85-91
Keywords aggression; contest behaviour; Dama dama; fallow deer; lateral display; lateralization; mating success; third-party intervention behaviour
Abstract Under certain models of animal competition, individuals are expected to gather information about opponent quality in order to determine whether they should fight or withdraw. However, the ability to process complex information differs between individuals and across brain hemispheres: a feature of vertebrate cognition known as lateralization that is not anticipated by contest models. I investigated the relationship between aggressive behaviour and mating success during the fallow deer, Dama dama, rut and a measure of lateralization derived from eye preference during parallel walking. Results show that there was no relationship between the tendency to escalate to fighting or predictability in the tendency to engage in fighting and lateralization. Conversely, there was a quadratic relationship between third-party intervention behaviour and lateralization: the greater the tendency to intervene in ongoing fights the lower the degree of lateralization. However, individuals that showed lateralization for right-eye use were least likely to be targeted by the intervening male; thus lateralization is beneficial in this context because targeted males are highly likely to lose this subsequent encounter. The relationship between lateralization and mating success was also nonlinear: males that showed little evidence for an eye bias during lateral displays had the greatest mating success. Taken together, individuals that showed lateralization benefited from avoiding being targeted after third-party intervention; conversely, individuals that showed little evidence for lateralization actively intervened during ongoing fights and had higher mating success. These results suggest that, although lateralization does appear to confer a fitness advantage on individuals, this is not as extensive as anticipated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3472 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5802
Permanent link to this record
 

 
Author Komárková, M.; Bartošová, J.
Title (down) Lateralized suckling in domestic horses (Equus caballus) Type Journal Article
Year 2013 Publication Abbreviated Journal Animal Cognition
Volume 16 Issue 3 Pages 343-349
Keywords Domestic horse; Foal; Suckling; Lateralization
Abstract Brain lateralization enables preferential processing of certain stimuli and more effective utilization of these stimuli in either the left or the right cerebral hemisphere. Horses show both motor and sensory lateralization patterns. Our aim was to determine whether a lateralized response could be detected in foals during the naturally side-biased behaviour, suckling. The foals’ preferred suckling side could be the effect of either visual or motor lateralization. In the case of a visual lateralized response, foals are expected to suck more often from the mother’s right side, so potential danger can be detected by the better adapted right hemisphere (i.e. left eye). Motor lateralization can be identified when a foal will suck predominantly from one side, either left or right. We found no population trend in the preferred suckling side, but we detected significant differences amongst individual foals. One-third (35.4 %) of 79 foals showed a strong, either right or left side preference which increased with age. The mothers did not influence the foals’ suckling side preferences either by side-biased rejection or termination of suckling. According to our findings, a general pattern of sucking with the left eye open for better danger detection and recognition is unlikely in foals up to 7 months old. Foals of this age are probably young or fully focused on suckling and rely on their mothers’ vigilance. Individual side preferences amongst foals are suggested to be based on motor lateralization.
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5664
Permanent link to this record
 

 
Author Phillips, C.J.C.; Oevermans, H.; Syrett, K.L.; Jespersen, A.Y.; Pearce, G.P.
Title (down) Lateralization of behavior in dairy cows in response to conspecifics and novel persons Type Journal Article
Year 2015 Publication Journal of Dairy Science Abbreviated Journal
Volume 98 Issue 4 Pages 2389-2400
Keywords dairy cow; dominance; hemispheric processing; visual lateralization
Abstract Abstract The right brain hemisphere, connected to the left eye, coordinates fight and flight behaviors in a wide variety of vertebrate species. We investigated whether left eye vision predominates in dairy cows’ interactions with other cows and humans, and whether dominance status affects the extent of visual lateralization. Although we found no overall lateralization of eye use to view other cows during interactions, cows that were submissive in an interaction were more likely to use their left eye to view a dominant animal. Both subordinate and older cows were more likely to use their left eye to view other cattle during interactions. Cows that predominantly used their left eye during aggressive interactions were more likely to use their left eye to view a person in unfamiliar clothing in the middle of a track by passing them on the right side. However, a person in familiar clothing was viewed predominantly with the right eye when they passed mainly on the left side. Cows predominantly using their left eyes in cow-to-cow interactions showed more overt responses to restraint in a crush compared with cows who predominantly used their right eyes during interactions (crush scores: left eye users 7.9, right eye users 6.4, standard error of the difference = 0.72). Thus, interactions between 2 cows and between cows and people were visually lateralized, with losing and subordinate cows being more likely to use their left eyes to view winning and dominant cattle and unfamiliar humans.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0302 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6027
Permanent link to this record