|   | 
Details
   web
Records
Author Finarelli, J.A.; Flynn, J.J.
Title Brain-size evolution and sociality in Carnivora Type Journal Article
Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 106 Issue 23 Pages 9345-9349
Keywords
Abstract Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encephalization allometries. These evolutionary transformations include multiple independent encephalization increases and decreases in addition to a remarkably static basal Carnivora allometry that characterizes much of the suborder Feliformia and some taxa in the suborder Caniformia across much of their evolutionary history, emphasizing that complex processes shaped the modern distribution of encephalization across Carnivora. This analysis also permits critical evaluation of the social brain hypothesis (SBH), which predicts a close association between sociality and increased encephalization. Previous analyses based on living species alone appeared to support the SBH with respect to Carnivora, but those results are entirely dependent on data from modern Canidae (dogs). Incorporation of fossil data further reveals that no association exists between sociality and encephalization across Carnivora and that support for sociality as a causal agent of encephalization increase disappears for this clade.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5337
Permanent link to this record
 

 
Author Weisbecker, V.; Goswami, A.
Title Brain size, life history, and metabolism at the marsupial/placental dichotomy Type Journal Article
Year 2010 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 107 Issue 37 Pages 16216-16221
Keywords
Abstract The evolution of mammalian brain size is directly linked with the evolution of the brain's unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR–brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals’ relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5338
Permanent link to this record
 

 
Author Lee, R.D.
Title Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species Type Journal Article
Year 2003 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 100 Issue 16 Pages 9637-9642
Keywords Adaptation, Physiological; *Aging; Animals; *Biological Evolution; Demography; Economics; Environment; Fertility; Humans; Life Expectancy; Longevity; Models, Theoretical; Parturition; Population Dynamics; Population Growth; Reproduction
Abstract The classic evolutionary theory of aging explains why mortality rises with age: as individuals grow older, less lifetime fertility remains, so continued survival contributes less to reproductive fitness. However, successful reproduction often involves intergenerational transfers as well as fertility. In the formal theory offered here, age-specific selective pressure on mortality depends on a weighted average of remaining fertility (the classic effect) and remaining intergenerational transfers to be made to others. For species at the optimal quantity-investment tradeoff for offspring, only the transfer effect shapes mortality, explaining postreproductive survival and why juvenile mortality declines with age. It also explains the evolution of lower fertility, longer life, and increased investments in offspring.
Address Department of Demography, University of California, 2232 Piedmont Avenue, Berkeley, CA 94720-2120, USA. rlee@demog.berkeley.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12878733 Approved no
Call Number Equine Behaviour @ team @ Serial 5465
Permanent link to this record
 

 
Author Liker, A.; Bókony, V.
Title Larger groups are more successful in innovative problem solving in house sparrows Type Journal Article
Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci USA
Volume 106 Issue 19 Pages 7893-7898
Keywords
Abstract Group living offers well-known benefits to animals, such as better predator avoidance and increased foraging success. An important additional, but so far neglected, advantage is that groups may cope more effectively with unfamiliar situations through faster innovations of new solutions by some group members. We tested this hypothesis experimentally by presenting a new foraging task of opening a familiar feeder in an unfamiliar way to house sparrows in small and large groups (2 versus 6 birds). Group size had strong effects on problem solving: sparrows performed 4 times more and 11 times faster openings in large than in small groups, and all members of large groups profited by getting food sooner (7 times on average). Independently from group size, urban groups were more successful than rural groups. The disproportionately higher success in large groups was not a mere consequence of higher number of attempts, but was also related to a higher effectiveness of problem solving (3 times higher proportion of successful birds). The analyses of the birds' behavior suggest that the latter was not explained by either reduced investment in antipredator vigilance or reduced neophobia in large groups. Instead, larger groups may contain more diverse individuals with different skills and experiences, which may increase the chance of solving the task by some group members. Increased success in problem solving may promote group living in animals and may help them to adapt quickly to new situations in rapidly-changing environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6538
Permanent link to this record
 

 
Author Morand-Ferron, J.; Quinn, J.L.
Title Larger groups of passerines are more efficient problem solvers in the wild Type Journal Article
Year 2011 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci USA
Volume 108 Issue 38 Pages 15898-15903
Keywords
Abstract Group living commonly helps organisms face challenging environmental conditions. Although a known phenomenon in humans, recent findings suggest that a benefit of group living in animals generally might be increased innovative problem-solving efficiency. This benefit has never been demonstrated in a natural context, however, and the mechanisms underlying improved efficiency are largely unknown. We examined the problem-solving performance of great and blue tits at automated devices and found that efficiency increased with flock size. This relationship held when restricting the analysis to naive individuals, demonstrating that larger groups increased innovation efficiency. In addition to this effect of naive flock size, the presence of at least one experienced bird increased the frequency of solving, and larger flocks were more likely to contain experienced birds. These findings provide empirical evidence for the “pool of competence” hypothesis in nonhuman animals. The probability of success also differed consistently between individuals, a necessary condition for the pool of competence hypothesis. Solvers had a higher probability of success when foraging with a larger number of companions and when using devices located near rather than further from protective tree cover, suggesting a role for reduced predation risk on problem-solving efficiency. In contrast to traditional group living theory, individuals joining larger flocks benefited from a higher seed intake, suggesting that group living facilitated exploitation of a novel food source through improved problem-solving efficiency. Together our results suggest that both ecological and social factors, through reduced predation risk and increased pool of competence, mediate innovation in natural populations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6539
Permanent link to this record
 

 
Author Horner, V.; Whiten, A.; Flynn, E.; de Waal, F.B.M.
Title Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 37 Pages 13878-13883
Keywords Animals; Child, Preschool; Humans; *Imitative Behavior; Pan troglodytes/*psychology
Abstract Observational studies of wild chimpanzees (Pan troglodytes) have revealed population-specific differences in behavior, thought to represent cultural variation. Field studies have also reported behaviors indicative of cultural learning, such as close observation of adult skills by infants, and the use of similar foraging techniques within a population over many generations. Although experimental studies have shown that chimpanzees are able to learn complex behaviors by observation, it is unclear how closely these studies simulate the learning environment found in the wild. In the present study we have used a diffusion chain paradigm, whereby a behavior is passed from one individual to the next in a linear sequence in an attempt to simulate intergenerational transmission of a foraging skill. Using a powerful three-group, two-action methodology, we found that alternative methods used to obtain food from a foraging device (“lift door” versus “slide door”) were accurately transmitted along two chains of six and five chimpanzees, respectively, such that the last chimpanzee in the chain used the same method as the original trained model. The fidelity of transmission within each chain is remarkable given that several individuals in the no-model control group were able to discover either method by individual exploration. A comparative study with human children revealed similar results. This study is the first to experimentally demonstrate the linear transmission of alternative foraging techniques by non-human primates. Our results show that chimpanzees have a capacity to sustain local traditions across multiple simulated generations.
Address Centre for Social Learning and Cognitive Evolution, School of Psychology, University of St. Andrews, Fife KY16 9JP, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16938863 Approved no
Call Number refbase @ user @ Serial 159
Permanent link to this record
 

 
Author de Waal, F.B.M.; Dindo, M.; Freeman, C.A.; Hall, M.J.
Title The monkey in the mirror: hardly a stranger Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 32 Pages 11140-11147
Keywords Analysis of Variance; Animals; Cebus/*physiology; *Discrimination (Psychology); Empathy; Female; Male; Observation; *Recognition (Psychology); *Self Concept; Sex Factors
Abstract It is widely assumed that monkeys see a stranger in the mirror, whereas apes and humans recognize themselves. In this study, we question the former assumption by using a detailed comparison of how monkeys respond to mirrors versus live individuals. Eight adult female and six adult male brown capuchin monkeys (Cebus apella) were exposed twice to three conditions: (i) a familiar same-sex partner, (ii) an unfamiliar same-sex partner, and (iii) a mirror. Females showed more eye contact and friendly behavior and fewer signs of anxiety in front of a mirror than they did when exposed to an unfamiliar partner. Males showed greater ambiguity, but they too reacted differently to mirrors and strangers. Discrimination between conditions was immediate, and blind coders were able to tell the difference between monkeys under the three conditions. Capuchins thus seem to recognize their reflection in the mirror as special, and they may not confuse it with an actual conspecific. Possibly, they reach a level of self-other distinction intermediate between seeing their mirror image as other and recognizing it as self.
Address Living Links Center, Emory University, Atlanta, GA 30322, USA. dewaal@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16055557 Approved no
Call Number refbase @ user @ Serial 164
Permanent link to this record
 

 
Author Seyfarth, R.M.; Cheney, D.L.
Title What are big brains for? Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages 4141-4142
Keywords Animals; Brain/*anatomy & histology; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract
Address Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA. seyfarth@psych.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11929989 Approved no
Call Number refbase @ user @ Serial 692
Permanent link to this record
 

 
Author Hoy, R.
Title Animal awareness: The (un)binding of multisensory cues in decision making by animals Type Journal Article
Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 102 Issue 7 Pages 2267-2268
Keywords Animals; Anura/physiology; *Awareness; *Behavior, Animal; Decision Making; Female; Male; Perception; Sensation
Abstract
Address Department of Neurobiology and Behavior, 215 Mudd Hall, Cornell University, Ithaca, NY 14850, USA. rrh3@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:15703288 Approved no
Call Number Equine Behaviour @ team @ Serial 2821
Permanent link to this record
 

 
Author Reiss, D.; Marino, L.
Title Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 10 Pages 5937-5942
Keywords Animals; *Cognition; Dolphins/*physiology; *Visual Perception
Abstract The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
Address Osborn Laboratories of Marine Sciences, New York Aquarium, Wildlife Conservation Society, Brooklyn, NY 11224, USA. dlr28@columbia.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11331768 Approved no
Call Number Equine Behaviour @ team @ Serial 2822
Permanent link to this record