|   | 
Details
   web
Records
Author de Waal, F.B.
Title Cultural primatology comes of age Type Journal Article
Year 1999 Publication Nature Abbreviated Journal Nature
Volume 399 Issue 6737 Pages 635-636
Keywords Animals; *Behavior, Animal; *Culture; Humans; Pan troglodytes/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:10385107 Approved no
Call Number refbase @ user @ Serial 196
Permanent link to this record
 

 
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res
Volume 3 Issue 3-4 Pages 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Flack, J.C.; Girvan, M.; de Waal, F.B.M.; Krakauer, D.C.
Title Policing stabilizes construction of social niches in primates Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 439 Issue 7075 Pages 426-429
Keywords Animals; Conflict (Psychology); Female; Macaca nemestrina/*physiology/*psychology; Male; Models, Biological; *Social Behavior
Abstract All organisms interact with their environment, and in doing so shape it, modifying resource availability. Termed niche construction, this process has been studied primarily at the ecological level with an emphasis on the consequences of construction across generations. We focus on the behavioural process of construction within a single generation, identifying the role a robustness mechanism--conflict management--has in promoting interactions that build social resource networks or social niches. Using 'knockout' experiments on a large, captive group of pigtailed macaques (Macaca nemestrina), we show that a policing function, performed infrequently by a small subset of individuals, significantly contributes to maintaining stable resource networks in the face of chronic perturbations that arise through conflict. When policing is absent, social niches destabilize, with group members building smaller, less diverse, and less integrated grooming, play, proximity and contact-sitting networks. Instability is quantified in terms of reduced mean degree, increased clustering, reduced reach, and increased assortativity. Policing not only controls conflict, we find it significantly influences the structure of networks that constitute essential social resources in gregarious primate societies. The structure of such networks plays a critical role in infant survivorship, emergence and spread of cooperative behaviour, social learning and cultural traditions.
Address Santa Fe Institute, Santa Fe, New Mexico 87501, USA. jflack@santafe.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16437106 Approved no
Call Number refbase @ user @ Serial 298
Permanent link to this record
 

 
Author Cheney, D.; Seyfarth, R.; Smuts, B.
Title Social relationships and social cognition in nonhuman primates Type Journal Article
Year 1986 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 234 Issue 4782 Pages 1361-1366
Keywords Animals; *Cognition; Female; Male; Pair Bond; Primates/*physiology; *Social Behavior; Social Dominance; Social Perception
Abstract Complex social relationships among nonhuman primates appear to contribute to individual reproductive success. Experiments with and behavioral observations of natural populations suggest that sophisticated cognitive mechanisms may underlie primate social relationships. Similar capacities are usually less apparent in the nonsocial realm, supporting the view that at least some aspects of primate intelligence evolved to solve the challenges of interacting with conspecifics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:3538419 Approved no
Call Number refbase @ user @ Serial 349
Permanent link to this record
 

 
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P.
Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 778-781
Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.
Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306809 Approved no
Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352
Permanent link to this record
 

 
Author Gentner, T.Q.; Fenn, K.M.; Margoliash, D.; Nusbaum, H.C.
Title Recursive syntactic pattern learning by songbirds Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 440 Issue 7088 Pages 1204-1207
Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/*physiology; Humans; *Language; Learning/*physiology; Linguistics; Models, Neurological; Semantics; Starlings/*physiology; Stochastic Processes
Abstract Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.
Address Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. tgentner@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16641998 Approved no
Call Number refbase @ user @ Serial 353
Permanent link to this record
 

 
Author Arnold, K.; Zuberbuhler, K.
Title Language evolution: semantic combinations in primate calls Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 441 Issue 7091 Pages 303
Keywords Animal Migration; Animals; Eagles/physiology; *Evolution; Female; Haplorhini/*physiology; Male; Predatory Behavior; *Semantics; *Vocalization, Animal
Abstract Syntax sets human language apart from other natural communication systems, although its evolutionary origins are obscure. Here we show that free-ranging putty-nosed monkeys combine two vocalizations into different call sequences that are linked to specific external events, such as the presence of a predator and the imminent movement of the group. Our findings indicate that non-human primates can combine calls into higher-order sequences that have a particular meaning.
Address School of Psychology, University of St Andrews, St Andrews KY16 9JP, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16710411 Approved no
Call Number refbase @ user @ Serial 354
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Animal behaviour: planning for breakfast Type Journal Article
Year 2007 Publication Nature Abbreviated Journal Nature
Volume 445 Issue 7130 Pages 825-826
Keywords Animals; Feeding Behavior/*physiology; *Food; Haplorhini/physiology; Memory/physiology; Songbirds/*physiology; Thinking/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:17314961 Approved no
Call Number refbase @ user @ Serial 356
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Cognitive science: rank inferred by reason Type Journal Article
Year 2004 Publication Nature Abbreviated Journal Nature
Volume 430 Issue 7001 Pages 732-733
Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:15306792 Approved no
Call Number refbase @ user @ Serial 365
Permanent link to this record