|   | 
Details
   web
Records
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G.
Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
Year 1995 Publication (down) Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 45 Issue 1 Pages 54-61
Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity
Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:7866771 Approved no
Call Number refbase @ user @ Serial 379
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D.
Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
Year 2004 Publication (down) Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.
Volume 63 Issue 4 Pages 233-246
Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology
Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4738
Permanent link to this record
 

 
Author Nakagawa, S.; Waas, J.R.
Title 'O sibling, where art thou?' – A review of avian sibling recognition with respect to the mammalian literature Type Journal Article
Year 2004 Publication (down) Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal
Volume 79 Issue 1 Pages 101-119
Keywords Birds; Direct familiarisation; Indirect familiarisation; Individual recognition; Kin discrimination; Kin recognition; Mammals; Sibling recognition
Abstract Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where 'mixing potential' of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through 'direct familiarisation' (commonly known as associative learning or familiarity); future experiments should also incorporate tests for 'indirect familiarisation' (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic.
Address Department of Biological Sciences, University Waikato, Private Bag 3105, Hamilton, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 9; Export Date: 23 October 2008; Source: Scopus Approved no
Call Number Equine Behaviour @ team @ Serial 4567
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J
Title The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
Year 2001 Publication (down) Biological Reviews Abbreviated Journal
Volume 76 Issue 3 Pages 341-364
Keywords biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.
Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4797
Permanent link to this record
 

 
Author Bergmann, H.H.; Klaus, S.; Muller, F.; Wiesner, J.
Title [Individuality and type specificity in the songs of a population of hazel grouse (Bonasa bonasia bonasia L., Tetraoninae, Phasianidae)] Type Journal Article
Year 1975 Publication (down) Behaviour Abbreviated Journal Behaviour
Volume 55 Issue 1-2 Pages 94-114
Keywords Animals; *Birds; Female; *Individuality; Male; Time Factors; *Vocalization, Animal
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title Individualitat und Artspezifitat in den Gesangsstrophen einer Population des Haselhuhns (Bonasa bonasia bonasia L., Tetraoninae, Phasianidae)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0005-7959 ISBN Medium
Area Expedition Conference
Notes PMID:1191217 Approved no
Call Number Equine Behaviour @ team @ Serial 4152
Permanent link to this record
 

 
Author Salzen, E.A.; Cornell, J.M.
Title Self-perception and species recognition in birds Type Journal Article
Year 1968 Publication (down) Behaviour Abbreviated Journal Behaviour
Volume 30 Issue 1 Pages 44-65
Keywords Animals; Birds; Color Perception; Discrimination Learning; Generalization, Response; Imprinting (Psychology); *Perception; *Self Concept; Social Isolation; *Species Specificity; Water
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0005-7959 ISBN Medium
Area Expedition Conference
Notes PMID:5644775 Approved no
Call Number Equine Behaviour @ team @ Serial 4154
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampus and memory in a food-storing and in a nonstoring bird species Type Journal Article
Year 1996 Publication (down) Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 5 Pages 946-964
Keywords Animals; Appetitive Behavior/*physiology; Attention/physiology; Birds/*physiology; Brain Mapping; Feeding Behavior/*physiology; Mental Recall/*physiology; Organ Size/physiology; Orientation/*physiology; Retention (Psychology)/physiology; Species Specificity
Abstract Food-storing birds maintain in memory a large and constantly changing catalog of the locations of stored food. The hippocampus of food-storing black-capped chickadees (Parus atricapillus) is proportionally larger than that of nonstoring dark-eyed juncos (Junco hyemalis). Chickadees perform better than do juncos in an operant test of spatial non-matching-to-sample (SNMTS), and chickadees are more resistant to interference in this paradigm. Hippocampal lesions attenuate performance in SNMTS and increase interference. In tests of continuous spatial alternation (CSA), juncos perform better than chickadees. CSA performance also declines following hippocampal lesions. By itself, sensitivity of a given task to hippocampal damage does not predict the direction of memory differences between storing and nonstoring species.
Address Department of Psychology, University of Toronto, Ontario, Canada. robert@ln.nimh.nih.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8918998 Approved no
Call Number refbase @ user @ Serial 375
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
Year 1996 Publication (down) Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 4 Pages 831-835
Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity
Abstract The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8864273 Approved no
Call Number refbase @ user @ Serial 376
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Foraging, memory, and constraints on learning Type Journal Article
Year 1985 Publication (down) Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 443 Issue Pages 216-226
Keywords Animals; Animals, Wild; *Appetitive Behavior; *Avoidance Learning; Birds; *Conditioning, Classical; Discrimination Learning; Food Preferences; *Memory; *Mental Recall; Motivation; *Predatory Behavior; Rats; *Taste
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:3860072 Approved no
Call Number refbase @ user @ Serial 384
Permanent link to this record
 

 
Author Touma, C.; Palme, R.
Title Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation Type Journal Article
Year 2005 Publication (down) Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 1046 Issue Pages 54-74
Keywords Animals; Birds/*metabolism; Circadian Rhythm; Feces/*chemistry; Glucocorticoids/*analysis; Mammals/*metabolism; Reproducibility of Results; Seasons; Sex Factors
Abstract In recent years, the noninvasive monitoring of steroid hormone metabolites in feces of mammals and droppings of birds has become an increasingly popular technique. It offers several advantages and has been applied to a variety of species under various settings. However, using this technique to reliably assess an animal's adrenocortical activity is not that simple and straightforward to apply. Because clear differences regarding the metabolism and excretion of glucocorticoid metabolites (GCMs) exist, a careful validation for each species and sex investigated is obligatory. In this review, general analytical issues regarding sample storage, extraction procedures, and immunoassays are briefly discussed, but the main focus lies on experiments and recommendations addressing the validation of fecal GCM measurements in mammals and birds. The crucial importance of scrutinizing the physiological and biological validity of fecal GCM analyses in a given species is stressed. In particular, the relevance of the technique to detect biologically meaningful alterations in adrenocortical activity must be shown. Furthermore, significant effects of the animals' sex, the time of day, season, and different life history stages are discussed, bringing about the necessity to seriously consider possible sex differences as well as diurnal and seasonal variations. Thus, comprehensive information on the animals' biology and stress physiology should be carefully taken into account. Together with an extensive physiological and biological validation, this will ensure that the measurement of fecal GCMs can be used as a powerful tool to assess adrenocortical activity in diverse investigations on laboratory, companion, farm, zoo, and wild animals.
Address Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Kraepelinstrasse 2-10, D-80804 Munich, Germany. touma@mpipsykl.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes PMID:16055843 Approved no
Call Number Equine Behaviour @ team @ Serial 4073
Permanent link to this record