|   | 
Details
   web
Records
Author Clayton, H.M.
Title Classification of collected trot, passage and piaffe based on temporal variables Type Journal Article
Year 1997 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 54-57
Keywords Analysis of Variance; Animals; Discriminant Analysis; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Running/physiology; Time Factors; Videotape Recording; Walking/physiology
Abstract The objective was to determine whether collected trot, passage and piaffe could be distinguished as separate gaits on the basis of temporal variables. Sagittal plane, 60 Hz videotapes of 10 finalists in the dressage competitions at the 1992 Olympic Games were analysed to measure the temporal variables in absolute terms and as percentages of stride duration. Classification was based on analysis of variance, a graphical method and discriminant analysis. Stride duration was sufficient to distinguish collected trot from passage and piaffe in all horses. The analysis of variance showed that the mean values of most variables differed significantly between passage and piaffe. When hindlimb stance percentage was plotted against diagonal advanced placement percentage, some overlap was found between all 3 movements indicating that individual horses could not be classified reliably in this manner. Using hindlimb stance percentage and diagonal advanced placement percentage as input in a discriminant analysis, 80% of the cases were classified correctly, but at least one horse was misclassified in each movement. When the absolute, rather than percentage, values of the 2 variables were used as input in the discriminant analysis, 90% of the cases were correctly classified and the only misclassifications were between passage and piaffe. However, the 2 horses in which piaffe was misclassified as passage were the gold and silver medallists. In general, higher placed horses tended toward longer diagonal advanced placements, especially in collected trot and passage, and shorter hindlimb stance percentages in passage and piaffe.
Address Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9354290 Approved no
Call Number Equine Behaviour @ team @ Serial 3738
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record
 

 
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author Barrey, E.; Galloux, P.
Title Analysis of the equine jumping technique by accelerometry Type Journal Article
Year 1997 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 45-49
Keywords *Acceleration; Analysis of Variance; Animals; Forelimb/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors
Abstract The purpose of this study was to demonstrate the relationships between jumping technique and dorsoventral acceleration measured at the sternum. Eight saddle horses of various jumping abilities competed on a selective experimental show jumping course including 14 obstacles. An accelerometric belt fastened onto the thorax continuously measured the dorsoventral acceleration during the course. At each jump, 11 locomotor parameters (acceleration peaks, durations and stride frequency) were obtained from the dorsoventral acceleration-time curves. The type of obstacle significantly influenced the hindlimb acceleration peak at take-off and the landing acceleration peak (P<0.01). The poor jumpers exhibited a higher mean forelimb acceleration peak at take-off, a higher forelimb/hindlimb ratio between peaks of acceleration (F/H), and a lower approach stride frequency than good jumpers. Knocking over an obstacle was significantly associated with a low hindlimb acceleration peak at take-off and a high F/H ratio (P<0.01). In order to observe the continuous changes in the frequency domain of the dorsoventral acceleration during the approach and take-off phase, a Morlet's wavelet analysis was computed for each horse jumping over a series of 3 vertical obstacles. Different patterns of time-frequency images obtained by wavelet analysis were found when the horse either knocked over a vertical obstacle or cleared it. In the latter case, the image pattern showed an instantaneous increase in stride frequency at the end of the approach phase, and a marked energy content in the middle frequency range at take-off.
Address INRA Station de Genetique Quantitative et Appliquee, Groupe cheval, Jouy-en-Josas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9354288 Approved no
Call Number Equine Behaviour @ team @ Serial 3796
Permanent link to this record
 

 
Author Galloux, P.; Barrey, E.
Title Components of the total kinetic moment in jumping horses Type Journal Article
Year 1997 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 41-44
Keywords Algorithms; Animals; Exertion/*physiology; Female; Gravitation; Horses/*physiology; Kinetics; Locomotion/*physiology; Male; Models, Biological; Movement/*physiology; Video Recording
Abstract Thirty horses were filmed with a panning camera operating at 50 frames/s as they jumped over a 1.20 x 1.20 m fence. The markers of 9 joints on the horse and 7 joints on the rider were tracked in 2D with the TrackEye system. The centre of gravity and moment of inertia of each segment were calculated using a geometric algorithm and a cylindric model, respectively. The kinetic moment of each part of the horse was calculated after filtering, and resampling of data. This method showed the relative contribution of each body segment to the body overall rotation during the take-off, jump and landing phases. It was found that the trunk, hindlimbs and head-neck had the greatest influence. The coordination between the motion of the body segments allowed the horse to control its angular speed of rotation over the fence. This remained nearly constant during the airborne phase (120 +/- 5 degrees/s). During the airborne phase, the kinetic moment was constant because its value was equal to the moment of the external forces (722 +/- 125 kg x m2/s).
Address Ecole Nationale d'Equitation, Terrefort, Saumur, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9354287 Approved no
Call Number Equine Behaviour @ team @ Serial 3797
Permanent link to this record
 

 
Author Winkelmayr, B.; Peham, C.; Fruhwirth, B.; Licka, T.; Scheidl, M.
Title Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter Type Journal Article
Year 2006 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 406-410
Keywords Animals; Back/*physiology; Back Pain/etiology/veterinary; Biomechanics; Exercise Test/veterinary; Female; Gait/physiology; Horse Diseases/etiology; Horses/*physiology; Humans; Locomotion/physiology; Male; Movement/*physiology; *Physical Conditioning, Animal/instrumentation/methods/physiology; *Pressure; Weight-Bearing/*physiology
Abstract REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.
Address Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402456 Approved no
Call Number Equine Behaviour @ team @ Serial 4007
Permanent link to this record
 

 
Author Robert, C.; Audigie, F.; Valette, J.P.; Pourcelot, P.; Denoix, J.M.
Title Effects of treadmill speed on the mechanics of the back in the trotting saddlehorse Type Journal Article
Year 2001 Publication (up) Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 154-159
Keywords Animals; Biomechanics; Electromyography/veterinary; Exercise Test/veterinary; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Range of Motion, Articular/*physiology; Spine/*physiology; Video Recording
Abstract Speed related changes in trunk mechanics have not yet been investigated, although high-speed training is currently used in the horse. To evaluate the effects of speed on back kinematics and trunk muscles activity, 4 saddle horses were recorded while trotting on a horizontal treadmill at speeds ranging from 3.5 to 6 m/s. The 3-dimensional (3-D) trajectories of skin markers on the left side of the horse and the dorsal midline of the trunk were established. Electrical activity was simultaneously obtained from the longissimus dorsi (LD) and rectus abdominis (RA) muscles using surface electrodes. Ten consecutive strides were analysed for each horse at each of the 5 velocity steps. Electromyographic and kinematic data were time-standardised to the duration of the stride cycle and compared using an analysis of variance. The back extended during the first part of each diagonal stance phase when the RA was active and the back flexed during the second part of each diagonal stance phase when the LD was active. The onset and end of muscle activity came earlier in the stride cycle and muscle activity intensity increased when speed increased. The amplitude of vertical movement of the trunk and the maximal angles of flexion decreased with increasing speed, whereas the extension angles remained unchanged. This resulted in a decreased range of back flexion-extension. This study confirms that the primary role of trunk muscles is to control the stiffness of the back rather than to induce movements. Understanding the effects of speed on the back of healthy horses is a prerequisite for the prevention and treatment of back pathology.
Address UMR INRA, Biomecanique et Pathologie Locomotrice du Cheval, UP d'Anatomie, Ecole Nationale Veterinaire d'Alfort, 7 Avenue du General de Gaulle, F-94704 Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721558 Approved no
Call Number Equine Behaviour @ team @ Serial 4050
Permanent link to this record
 

 
Author Wolff, A.; Hausberger, M.
Title Behaviour of foals before weaning may have some genetic basis Type Journal Article
Year 1994 Publication (up) Ethology Abbreviated Journal Ethology
Volume 96 Issue 1 Pages 1-10
Keywords Locomotion; Suckling; Social behavior; Foraging behavior; Exploratory behavior; Interindividual comparison; Young animal; Genetic inheritance; Captivity; Social interaction; Feeding behavior; Perissodactyla; Ungulata; Mammalia; Vertebrata
Abstract In this preliminary study on foal behaviour, 13 French saddlebred foals (2-3 mo old) and their dams were observed on pasture. The most important findings are the interindividual quantitative differences in foal behaviour patterns as well as in the amount of mainly foal-initiated time spent at given distances from their mares. Interindividual differences seem in part due to a sire effect
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5022
Permanent link to this record
 

 
Author Krause Hoare; Hemelrijk; Rubenstein
Title Leadership in fish shoals Type Journal Article
Year 2000 Publication (up) Fish and Fisheries Abbreviated Journal Fish Fish
Volume 1 Issue Pages 82-89
Keywords directional locomotion; fish schools; front fish; nutritional state; schooling; shoal leadership; swimming direction
Abstract Leadership is not an inherent quality of animal groups that show directional locomotion. However, there are other factors that may be responsible for the occurrence of leadership in fish shoals, such as individual differences in nutritional state between group members. It appears that front fish have a strong influence on directional shoal movements and that individuals that occupy such positions are often characterised by larger body lengths and lower nutritional state. Potential interactions between the two factors and their importance for positioning within shoals need further attention. Initiation of directional movement in stationary shoals and position preferences in mobile shoals need to be addressed separately because they are potentially subject to different constraints. Individuals that initiate a swimming direction may not necessarily be capable of the sustained high swimming performance required to keep the front position or have the motivation to do so, for that matter. More empirical and theoretical work is necessary to look at the factors controlling positioning behaviour within shoals, as well as overall shoal shape and structure. Tracking of marked individuals whose positioning behaviour is monitored over extended time periods of hours or days would be useful. There is an indication that shoal positions are rotated by individuals according to their nutritional needs, with hungry fish occupying front positions only for as long as necessary to regain their nutritional balance. This suggests that shoal members effectively take turns at being leaders. There is a need for three-dimensional recordings of shoaling behaviour using high-speed video systems that allow a detailed analysis of information transfer in shoals of different size. The relationship between leadership and shoal size might provide an interesting field for future research. Most studies to date have been restricted to shoals of small and medium size and more information on larger shoals would be useful.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 2067
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J.
Title Horses damp the spring in their step Type Journal Article
Year 2001 Publication (up) Nature Abbreviated Journal Nature
Volume 414 Issue 6866 Pages 895-899
Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration
Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:11780059 Approved no
Call Number Equine Behaviour @ team @ Serial 2300
Permanent link to this record