toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krueger, K.; Schwarz, S.; Marr, I.; Farmer, K. doi  openurl
  Title Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather Than Straightness Type Magazine Article
  Year 2022 Publication (up) Animals Abbreviated Journal Animals  
  Volume 12 Issue 8 Pages 1042  
  Keywords balance; body asymmetry; equitation; horse; motor laterality; sensory laterality; stress; welfare  
  Abstract For centuries, a goal of training in many equestrian disciplines has been to straighten the horse, which is considered a key element in achieving its responsiveness and suppleness. However, laterality is a naturally occurring phenomenon in horses and encompasses body asymmetry, motor laterality and sensory laterality. Furthermore, forcibly counterbalancing motor laterality has been considered a cause of psychological imbalance in humans. Perhaps asymmetry and laterality should rather be accepted, with a focus on training psychological and physical balance, coordination and equal strength on both sides instead of enforcing “straightness”. To explore this, we conducted a review of the literature on the function and causes of motor and sensory laterality in horses, especially in horses when trained on the ground or under a rider. The literature reveals that body asymmetry is innate but does not prevent the horse from performing at a high level under a rider. Motor laterality is equally distributed in feral horses, while in domestic horses, age, breed, training and carrying a rider may cause left leg preferences. Most horses initially observe novel persons and potentially threatening objects or situations with their left sensory organs. Pronounced preferences for the use of left sensory organs or limbs indicate that the horse is experiencing increased emotionality or stress, and long-term insufficiencies in welfare, housing or training may result in left shifts in motor and sensory laterality and pessimistic mentalities. Therefore, increasing laterality can be regarded as an indicator for insufficiencies in housing, handling and training. We propose that laterality be recognized as a welfare indicator and that straightening the horse should be achieved by conducting training focused on balance, coordination and equal strength on both sides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Animals  
  Series Volume 12 Series Issue 8 Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6670  
Permanent link to this record
 

 
Author Murphy, J.; Sutherland, A.; Arkins, S. doi  openurl
  Title Idiosyncratic motor laterality in the horse Type Journal Article
  Year 2005 Publication (up) Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 91 Issue 3-4 Pages 297-310  
  Keywords Horse; Idiosyncratic motor behaviour; Laterality; Sidedness  
  Abstract Idiosyncratic motor behaviour was investigated during four experimental procedures in 40 horses (males = 20, females = 20) to establish if horses revealed evidence of significant right or left laterality. The experimental procedures included (1) detection of the preferred foreleg to initiate movement (walk or trot), (2) obstacle avoidance within a passageway (right or left), (3) obstacle avoidance when ridden and (4) idiosyncratic motor bias when rolling. The influence of the horses' sex on both the direction and the degree of the laterality was explored within and between experimental procedures. The findings showed that the direction, but not the degree of idiosyncratic motor preference in the horses was strongly sex-related. Male horses exhibited significantly more (t = 3.74, d.f. = 79, P < 0.001) left lateralised responses and female horses exhibited significantly more (t = -6.35, d.f. = 79, P < 0.01) right lateralised responses. There was also significant positive correlation (P < 0.05) between four of six possible inter-experimental relationships. The results suggest two discrete trends of laterality associated with the sex of the horse. The primary cause of idiosyncratic motor laterality may be genetically predetermined, influenced by environmental factors or a combination of these two and the current findings may support the development of sex-specific training schedules for the horse. Further, work in this area might assist in defining the mechanisms of brain hemisphere lateralisation and allocation of cognitive function in the horse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 527  
Permanent link to this record
 

 
Author McGreevy, P.D.; Thomson, P.C. url  doi
openurl 
  Title Differences in motor laterality between breeds of performance horse Type Journal Article
  Year 2006 Publication (up) Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 99 Issue 1-2 Pages 183-190  
  Keywords Horse; Lateralisation; Laterality; Breed; Training  
  Abstract This study examined the relationship between motor laterality in horses bred for different types of work and therefore different temperaments. Foreleg preference during grazing was measured in three populations of domestic horse, Thoroughbreds (TB, bred to race at the gallop), Standardbreds (SB, bred for pacing) and Quarter Horses (QH, in this case bred for so-called “cutting work” which involves manoeuvring individual cattle in and out of herds). With a one-sample t-test, TBs showed strong evidence of a left preference in motor laterality (P = 0.000), as did SBs (P = 0.002) but there was no convincing evidence for laterality in QH (P = 0.117). However, the increasing trend in left preference from QH to SBs then TBs was associated with increasing differences between individual horses within a breed. The overall preference (either left or right) increased with age (P = 0.008) and the rate of increase varied with breeds. The presence of a higher proportion of left-foreleg preferent individuals in TBs and SBs compared with QH may indicate that their training or selection (or both) has an effect on motor bias.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1828  
Permanent link to this record
 

 
Author Stomp, M.; d'Ingeo, S.; Henry, S.; Cousillas, H.; Hausberger, M. url  doi
openurl 
  Title Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model Type Journal Article
  Year 2021 Publication (up) Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 236 Issue Pages 105271  
  Keywords Laterality; Electroencephalography; Theta wave; Welfare; Horses  
  Abstract Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6628  
Permanent link to this record
 

 
Author Stomp, M.; d'Ingeo, S.; Henry, S.; Cousillas, H.; Hausberger, M. url  doi
openurl 
  Title Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model Type Journal Article
  Year 2021 Publication (up) Applied Animal Behaviour Science Abbreviated Journal  
  Volume 236 Issue Pages 105271  
  Keywords Laterality; Electroencephalography; Theta wave; Welfare; Horses  
  Abstract Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6629  
Permanent link to this record
 

 
Author Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title Dogs turn left to emotional stimuli Type Journal Article
  Year 2010 Publication (up) Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 208 Issue 2 Pages 516-521  
  Keywords Dog; Laterality; Vision; Behaviour; Physiology; Cognition; Emotion; Animal welfare  
  Abstract During feeding behaviour, dogs were suddenly presented with 2D stimuli depicting the silhouette of a dog, a cat or a snake simultaneously into the left and right visual hemifields. A bias to turn the head towards the left rather than the right side was observed with the cat and snake stimulus but not with the dog stimulus. Latencies to react following stimulus presentation were lower for left than for right head turning, whereas times needed to resume feeding behaviour were higher after left rather than after right head turning. When stimuli were presented only to the left or right visual hemifields, dogs proved to be more responsive to left side presentation, irrespective of the type of stimulus. However, cat and snake stimuli produced shorter latencies to react and longer times to resume feeding following left rather than right monocular visual hemifield presentation. Results demonstrate striking lateralization in dogs, with the right side of the brain more responsive to threatening and alarming stimuli. Possible implications for animal welfare are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5080  
Permanent link to this record
 

 
Author Sakai, M.; Hishii, T.; Takeda, S.; Kohshima, S. url  doi
openurl 
  Title Laterality of flipper rubbing behaviour in wild bottlenose dolphins (Tursiops aduncus): Caused by asymmetry of eye use? Type Journal Article
  Year 2006 Publication (up) Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 170 Issue 2 Pages 204-210  
  Keywords Indo-Pacific bottlenose dolphin; Tursiops aduncus; Social behaviour; Contact behaviour; Flipper rubbing; Behavioural laterality; Eye use; Cerebral asymmetry  
  Abstract To determine whether wild Indo-Pacific bottlenose dolphins (Tursiops aduncus) at Mikura Island, Japan, show asymmetry of eye or flipper use during a social behaviour, we investigated the laterality of flipper-to-body (F-B) rubbing, in which one dolphin (“rubber”) rubs the body of another (“rubbee”) with its flipper. We analysed 382 episodes of video-recorded F-B rubbings performed by identified individuals (N = 111 rubbers). F-B rubbing was conducted significantly more frequently with the left flipper than with the right flipper. The duration of F-B rubbings was also significantly longer with the left flipper than with the right flipper. Of 20 dolphins, nine individuals showed significant left-side bias as the rubber in this behaviour, whereas no dolphins showed significant right-side bias. The results indicate a population-level left-side bias of the rubber in F-B rubbing. An analysis of the swimming configurations during this behaviour suggests that the asymmetry in F-B rubbing was caused not only by the laterality of the rubber, but by a preference for use of the left eye in both dolphins during this behaviour. Dolphins used the left eye significantly more frequently than the right eye during the inquisitive behaviour, while they showed no significant bias in flipper use during the object-carrying behaviour. These facts also suggest that the asymmetry of F-B rubbing is caused by the preference for using the left eye. Significant left-side bias was observed only in F-B rubbings initiated by the rubbee, in which the rubbee determined its position during this behaviour. This suggests that this behavioural asymmetry was enhanced by the rubbees choosing the left side of the rubber to ensure better and longer rubs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5347  
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. url  doi
openurl 
  Title Behavioural lateralization in sheep (Ovis aries) Type Journal Article
  Year 2007 Publication (up) Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 184 Issue 1 Pages 72-80  
  Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization  
  Abstract This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6701  
Permanent link to this record
 

 
Author Giljov, A.; Karenina, K. url  doi
openurl 
  Title Differential roles of the right and left brain hemispheres in the social interactions of a free-ranging ungulate Type Journal Article
  Year 2019 Publication (up) Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 168 Issue Pages 103959  
  Keywords Laterality; Hemispheric specialization; Brain asymmetry; Eye preference; Ungulate; Bovid  
  Abstract Despite the abundant empirical evidence on lateralized social behaviours, a clear understanding of the relative roles of two brain hemispheres in social processing is still lacking. This study investigated visual lateralization in social interactions of free-ranging European bison (Bison bonasus). The bison were more likely to display aggressive responses (such as fight and side hit), when they viewed the conspecific with the right visual field, implicating the left brain hemisphere. In contrast, the responses associated with positive social interactions (female-to-calf bonding, calf-to-female approach, suckling) or aggression inhibition (fight termination) occurred more likely when the left visual field was in use, indicating the right hemisphere advantage. The results do not support either assumptions of right-hemisphere dominance for control of various social functions or hypotheses about simple positive (approach) versus negative (withdrawal) distinction between the hemispheric roles. The discrepancy between the studies suggests that in animals, the relative roles of the hemispheres in social processing may be determined by a fine balance of emotions and motivations associated with the particular social reaction difficult to categorize for a human investigator. Our findings highlight the involvement of both brain hemispheres in the control of social behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6587  
Permanent link to this record
 

 
Author Rogers, L.J. url  doi
openurl 
  Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
  Year 2000 Publication (up) Brain and Language Abbreviated Journal Brain Lang  
  Volume 73 Issue 2 Pages 236-253  
  Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology  
  Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.  
  Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10856176 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print