|   | 
Details
   web
Records
Author Corballis, M.C.
Title Of mice and men – and lopsided birds Type Journal Article
Year 2008 Publication (up) Cortex Abbreviated Journal
Volume 44 Issue 1 Pages 3-7
Keywords Cerebral asymmetry; Handedness; Evolution; Laterality
Abstract The article by Zucca and Sovrano (2008, this issue) represents part of a new wave of studies of lateralization in nonhuman species. This work is often in conflict with earlier studies of human cerebral asymmetry and handedness, and the associated claim that these asymmetries are uniquely human, and perhaps even a result of the “speciation event” that led to modern humans. It is now apparent that there are close parallels between human and nonhuman asymmetries, suggesting that they have ancient roots. I argue that asymmetries must be seen in the context of a bilaterally symmetrical body plan, and that there is a balance to be struck between the adaptive advantages of symmetry and asymmetry. In human evolution, systematic asymmetries were incorporated into activities that probably are unique to our species, but the precursors of these asymmetries are increasingly evident in other species, including frogs, fish, birds, and mammals – especially primates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4634
Permanent link to this record
 

 
Author Vlajkoviç, S.; Nikoliç, V.; Nikoliç, A.; Milanoviç, S.žA.; Jankoviç, B.D.
Title Asymmetrical Modulation of Immune Reactivity in Left- and Right-Biased Rats After Ipsilateral Ablation of the Prefrontal, Parietal and Occipital Brain Neocortex Type Journal Article
Year 1994 Publication (up) Int J Neurosci Abbreviated Journal International Journal of Neuroscience
Volume 78 Issue 1-2 Pages 123-134
Keywords Brain asymmetry, brain neocortex, cortical ablation, rotational behavior, rotational bias, immune responses, neuroimmunomodulation, neuroimmunology
Abstract We report here on the lateralized brain immunomodulation in male Wistar rats, a phenomenon related to the rotational bias of animal and the site of cortical lesion. Rats assigned to left- and right-rotators in a cylindrical Plexiglass rotometer were subjected to the ablation of the ipsilateral prefrontal cortex (PFC), parietal cortex (PC) and occipital cortex (OC) and sensitized with bovine serum albumin (BSA) in complete Freund's adjuvant. Intact and sham-lesioned left-biased animals demonstrated increased Arthus and delayed hypersensitivity skin reactions and antibody production to BSA in comparison with corresponding right-biased animals. PFC ablation decreased humoral and cellular immune responses to BSA in left- but increased in right-biased rats. Lesioning of PC decreased humoral immune reactions in left- but increased in right-rotating animals. OC ablation failed to produce immunological abnormalities, These results suggest that immunopotentiation is associated with the left neocortex, and immunosuppression with the right neocortex. The prefrontal cortex appears to be particularly associated with immune reactions.
Address
Corporate Author Thesis
Publisher Informa Clin Med Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7454 ISBN Medium
Area Expedition Conference
Notes doi: 10.3109/00207459408986051 Approved no
Call Number Equine Behaviour @ team @ Serial 5777
Permanent link to this record
 

 
Author Peirce, J.W.; Leigh, A.E.; Kendrick, K.M.
Title Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep Type Journal Article
Year 2000 Publication (up) Neuropsychologia Abbreviated Journal
Volume 38 Issue 4 Pages 475-483
Keywords Asymmetry; Hemispheric lateralisation; Chimeric; Face processing; Expertise; Internal features
Abstract This study examined characteristics of visual recognition of familiar and unfamiliar faces in sheep using a 2-way discrimination task. Of particular interest were effects of lateralisation and the differential use of internal (configurational) vs external features of the stimuli. Animals were trained in a Y-maze to identify target faces from pairs, both of which were familiar (same flock as the subjects) or both of which were unfamiliar (different flock). Having been trained to identify the rewarded face a series of stimuli were presented to the sheep, designed to test for the use of each visual hemifield in the discriminations and the use of internal and external facial cues. The first experiment showed that there was a left visual hemifield (LVF) advantage in the identification of [`]hemifaces', and [`]mirrored hemifaces' and [`]chimeric' faces and that this effect was strongest with familiar faces. This represents the first evidence for visual field bias outside the primate literature. Results from the second experiment showed that, whilst both familiar and unfamiliar faces could be identified by the external features alone, only the familiar faces could be recognised by the internal features alone. Overall the results suggest separate recognition methods for socially familiar and unfamiliar faces, with the former being coded more by internal, configurational cues and showing a lateral bias to the left visual field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-3932 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5343
Permanent link to this record
 

 
Author Rogers, L.
Title Asymmetry of Motor Behavior and Sensory Perception: Which Comes First? Type Journal Article
Year 2020 Publication (up) Symmetrie Abbreviated Journal Symmetrie
Volume 12 Issue 5 Pages 690
Keywords development; motor asymmetry; visual lateralization; human fetus; chick embryo; sensory-motor interaction
Abstract By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6610
Permanent link to this record
 

 
Author Rogers, L.J.
Title A Matter of Degree: Strength of Brain Asymmetry and Behaviour Type
Year 2017 Publication (up) Symmetry Abbreviated Journal Symmetry
Volume Issue Pages
Keywords functional asymmetry; strength of lateralization; direction of lateralization; advantages; disadvantages; vertebrate species; limb preference; eye bias
Abstract Research on a growing number of vertebrate species has shown that the left and right sides of the brain process information in different ways and that lateralized brain function is expressed in both specific and broad aspects of behaviour. This paper reviews the available evidence relating strength of lateralization to behavioural/cognitive performance. It begins by considering the relationship between limb preference and behaviour in humans and primates from the perspectives of direction and strength of lateralization. In birds, eye preference is used as a reflection of brain asymmetry and the strength of this asymmetry is associated with behaviour important for survival (e.g., visual discrimination of food from non-food and performance of two tasks in parallel). The same applies to studies on aquatic species, mainly fish but also tadpoles, in which strength of lateralization has been assessed as eye preferences or turning biases. Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts. Brief discussion of interhemispheric communication follows together with discussion of experiments that examined the effects of sectioning pathways connecting the left and right sides of the brain, or of preventing the development of these left-right connections. The conclusion reached is that degree of functional lateralization affects behaviour in quite similar ways across vertebrate species. Although the direction of lateralization is also important, in many situations strength of lateralization matters more. Finally, possible interactions between asymmetry in different sensory modalities is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title Symmetry
Series Volume 9 Series Issue 4 Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6167
Permanent link to this record
 

 
Author Maloney, S.J.
Title The Relationship Between Asymmetry and Athletic Performance: A Critical Review Type Journal Article
Year 2019 Publication (up) The Journal of Strength & Conditioning Research Abbreviated Journal
Volume 33 Issue 9 Pages
Keywords symmetry; imbalance; power; strength
Abstract Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res 33(9): 2579-2593, 2019--Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-8011 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ 00124278-201909000-00032 Serial 6662
Permanent link to this record