toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L. url  doi
openurl 
  Title Social intelligence in the spotted hyena (Crocuta crocuta) Type Journal Article
  Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 362 Issue 1480 Pages 523-538  
  Keywords Anatomy, Comparative; Animals; Brain/*anatomy & histology; Cercopithecinae/anatomy & histology/*physiology; Decision Making/physiology; Hyaenidae/anatomy & histology/*physiology; *Intelligence; *Recognition (Psychology); *Social Behavior; Species Specificity  
  Abstract If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.  
  Address Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. holekamp@msu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8436 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17289649 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4719  
Permanent link to this record
 

 
Author Smith, J.E.; Kolowski, J.M.; Graham, K.E.; Dawes, S.E.; Holekamp, K.E. url  doi
openurl 
  Title Social and ecological determinants of fission-fusion dynamics in the spotted hyaena Type Journal Article
  Year 2008 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 76 Issue 3 Pages 619-636  
  Keywords competition; conflict resolution; cooperative hunting; Crocuta crocuta; ecological constraints; group living; social rank  
  Abstract Theory predicts that individuals living in fission-fusion societies, in which group members frequently change subgroups, should modify grouping patterns in response to varying social and environmental conditions. Spotted hyaenas, Crocuta crocuta, are long-lived carnivores that reside in permanent social groups called clans. Clans are complex, fission-fusion societies in which individual members travel, rest and forage in subgroups that frequently change composition. We studied two clans in Kenya to provide the first detailed description of fission-fusion dynamics in this species. Because social and ecological circumstances can influence the cohesiveness of animal societies, we evaluated the extent to which specific circumstances promote the formation of subgroups of various sizes. We found that cooperative defence of shared resources during interclan competition and protection from lions were cohesive forces that promoted formation of large subgroups. We also tested hypotheses suggesting factors limiting subgroup size. Mothers with small cubs avoided conspecifics, thereby reducing infanticide risk. Victims of aggression either reconciled fights or separated from former opponents to reduce the immediate costs of escalated aggression in the absence of food. As predicted by the ecological constraints hypothesis, hyaenas adjusted their grouping patterns over both short and long time scales in response to feeding competition. Crocuta were most gregarious during periods of abundant prey, joined clanmates at ephemeral kills in numbers that correlated with the energetic value of the prey and gained the most energy when foraging alone because cooperative hunting attracted numerous competitors. Overall, our findings indicate that resource limitation constrains grouping in this species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4676  
Permanent link to this record
 

 
Author Rozempolska-Ruciń ska, Iwona; Trojan, Maciej; Kosik, Elż bieta; Próchniak, Tomasz; Górecka-Bruzda, Aleksandra url  openurl
  Title How “natural” training methods can affect equine mental state? A critical approach -- a review Type Journal Article
  Year 2013 Publication Animal Science Papers & Reports Abbreviated Journal  
  Volume 31 Issue 3 Pages 185  
  Keywords HORSES -- Training; HORSEMANSHIP; HUMAN-animal relationships; LEARNING in animals; ANIMAL psychology; ANIMAL intelligence; ANIMAL welfare  
  Abstract Among equestrians the “natural” training methods of horses are gaining widespread popularity due to their spectacular efficiency. Underlying philosophy of trainers – founders of different “natural horsemanship training” (NHT) schools, along with other not well documented statements includes argumentation of solely welfare- and human-friendly effects of NHT in the horse. The aim of this review was to screen scientific papers related to NHT to answer the question whether „natural“ training methods may actually exert only positive effects upon equine mental state and human-horse relationship. It appears that NHT trainers may reduce stress and emotional tension and improve learning processes as they appropriately apply learning stimuli. Basing on revised literature it can be concluded that training is successful provided that [i] the strength of the aversive stimulus meets sensitivity of an individual horse, [ii] the aversive stimulus is terminated at a right moment to avoid the impression of punishment, and [iii] the animal is given enough time to assess its situation and make an independent decision in the form of adequate behavioural reaction. Neglecting any of these conditions may lead to substantial emotional problems, hyperactivity, or excessive fear in the horse-human relationship, regardless of the training method. However, we admit that the most successful NHT trainers reduce aversive stimulation to the minimum and that horses learn quicker with fear or stress reactions, apparently decreasing along with training process. Anyway, NHT should be acknowledged for absolutely positive role in pointing out the importance of proper stimulation in the schooling and welfare of horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5726  
Permanent link to this record
 

 
Author Friederici, A.D.; Alter, K. url  doi
openurl 
  Title Lateralization of auditory language functions: a dynamic dual pathway model Type Journal Article
  Year 2004 Publication Brain and Language Abbreviated Journal Brain Lang  
  Volume 89 Issue 2 Pages 267-276  
  Keywords Auditory Pathways/physiology; Brain Mapping; Comprehension/*physiology; Dominance, Cerebral/*physiology; Frontal Lobe/*physiology; Humans; Nerve Net/physiology; Phonetics; Semantics; Speech Acoustics; Speech Perception/*physiology; Temporal Lobe/*physiology  
  Abstract Spoken language comprehension requires the coordination of different subprocesses in time. After the initial acoustic analysis the system has to extract segmental information such as phonemes, syntactic elements and lexical-semantic elements as well as suprasegmental information such as accentuation and intonational phrases, i.e., prosody. According to the dynamic dual pathway model of auditory language comprehension syntactic and semantic information are primarily processed in a left hemispheric temporo-frontal pathway including separate circuits for syntactic and semantic information whereas sentence level prosody is processed in a right hemispheric temporo-frontal pathway. The relative lateralization of these functions occurs as a result of stimulus properties and processing demands. The observed interaction between syntactic and prosodic information during auditory sentence comprehension is attributed to dynamic interactions between the two hemispheres.  
  Address Max Planck Institute of Cognitive Neuroscience, P.O. Box 500 355, 04303 Leipzig, Germany. angelafr@cns.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15068909 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4722  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Björk, N. url  openurl
  Title Is it possible to measure the welfare of the ridden horse? Type Manuscript
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords horse, welfare, training, learning, measure, assess  
  Abstract Since the time of domestication, humans have trained horses for the purpose of serving man. Different training methods have been developed throughout the centuries; some were developed with consideration for the horse's welfare, while others disregarded welfare to a great extent. Most present day training is based upon making the horse perform a desired behaviour through dominance and subordination. Although cooperative training techniques have gained popularity, everyday training lacks the application of learning theory or neglects the horse's learning capacities and their species' specific behaviour. Thus, the horse's welfare may be jeopardised.

The aim with this review is to consider methods that allow an objective assessment of the welfare of horses undergoing training. The review gives a brief insight into the history of horse training and handling. It proceeds with an overview of the horse"s learning abilities which is argued to be of paramount importance for effective training. The review then describes a few selected training techniques that are used today, based on negative and positive reinforcement, and discusses parameters from which it could be possible to assess the welfare of the ridden horse. The work concludes with suggestion for future
 
  Address  
  Corporate Author Thesis Bachelor's thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4749  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Barton, R.A. url  doi
openurl 
  Title Neocortex size and behavioural ecology in primates Type Journal Article
  Year 1996 Publication Proceedings of the Royal Society B Abbreviated Journal Proc. R. Soc. Lond. B  
  Volume 263 Issue 1367 Pages 173-177  
  Keywords Animals; *Behavior, Animal; Brain/*anatomy & histology; Cerebral Cortex/*anatomy & histology/*physiology; *Ecology; Evolution; Primates/anatomy & histology/*physiology/psychology; Regression Analysis; Species Specificity  
  Abstract The neocortex is widely held to have been the focus of mammalian brain evolution, but what selection pressures explain the observed diversity in its size and structure? Among primates, comparative studies suggest that neocortical evolution is related to the cognitive demands of sociality, and here I confirm that neocortex size and social group size are positively correlated once phylogenetic associations and overall brain size are taken into account. This association holds within haplorhine but not strepsirhine primates. In addition, the neocortex is larger in diurnal than in nocturnal primates, and among diurnal haplorhines its size is positively correlated with the degree of frugivory. These ecological correlates reflect the diverse sensory-cognitive functions of the neocortex.  
  Address Department of Anthropology, University of Durham  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8728982 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4783  
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J doi  openurl
  Title The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
  Year 2001 Publication Biological Reviews Abbreviated Journal  
  Volume 76 Issue 3 Pages 341-364  
  Keywords biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.  
  Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4797  
Permanent link to this record
 

 
Author Goodwin, D.; McGreevy, P.; Waran, N.; McLean, A. url  doi
openurl 
  Title How equitation science can elucidate and refine horsemanship techniques Type Journal Article
  Year 2009 Publication The Veterinary Journal Abbreviated Journal Special Issue: Equitation Science  
  Volume 181 Issue 1 Pages 5-11  
  Keywords Horse; Training; Equitation; Learning theory; Ethology; Cognition  
  Abstract The long-held belief that human dominance and equine submission are key to successful training and that the horse must be taught to [`]respect' the trainer infers that force is often used during training. Many horses respond by trialling unwelcome evasions, resistances and flight responses, which readily become established. When unable to cope with problem behaviours, some handlers in the past might have been encouraged to use harsh methods or devices while others may have called in a so-called [`]good horseman' or [`]horse whisperer' to remediate the horse. Frequently, the approaches such practitioners offer could not be applied by the horse's owner or trainer because of their lack of understanding or inability to apply the techniques. Often it seemed that these [`]horse-people' had magical ways with horses (e.g., they only had to whisper to them) that achieved impressive results although they had little motivation to divulge their techniques. As we begin to appreciate how to communicate with horses sensitively and consistently, misunderstandings and misinterpretations by horse and trainer should become less common. Recent studies have begun to reveal what comprises the simplest, most humane and most effective mechanisms in horse training and these advances are being matched by greater sharing of knowledge among practitioners. Indeed, various practitioners of what is referred to here as [`]natural horsemanship' now use techniques similar to the [`]whisperers' of old, but they are more open about their methods. Reputable horse trainers using natural horsemanship approaches are talented observers of horse behaviour and respond consistently and swiftly to the horse's subtle cues during training. For example, in the roundpen these trainers apply an aversive stimulus to prompt a flight response and then, when the horse slows down, moves toward them, or offers space-reducing affiliative signals, the trainer immediately modifies his/her agonistic signals, thus negatively reinforcing the desired response. Learning theory and equine ethology, the fundamentals of the emerging discipline of equitation science, can be used to explain almost all the behaviour modification that goes on in these contexts and in conventional horsemanship. By measuring and evaluating what works and what does not, equitation science has the potential to have a unifying effect on traditional practices and developing branches of equitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1090-0233 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4826  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print