toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rankin, D.J.; Lopez-Sepulcre, A.; Foster, K.R.; Kokko, H. url  doi
openurl 
  Title Species-level selection reduces selfishness through competitive exclusion Type Journal Article
  Year 2007 Publication Journal of Evolutionary Biology Abbreviated Journal  
  Volume 20 Issue 4 Pages 1459-1468  
  Keywords  
  Abstract Abstract Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a .tragedy of the commons., where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4225  
Permanent link to this record
 

 
Author Fisher, D.O.; Blomberg, S.P.; Owens, I.P.F. doi  openurl
  Title Convergent Maternal Care Strategies In Ungulates And Macropods Type Journal Article
  Year 2002 Publication Evolution Abbreviated Journal  
  Volume 56 Issue 1 Pages 167-176  
  Keywords  
  Abstract Mammals show extensive interspecific variation in the form of maternal care. Among ungulates, there is a dichotomy between species in which offspring follow the mother (“following” strategy) versus species in which offspring remain concealed (“hiding” strategy). Here we reveal that the same dichotomy exists among macropods (kangaroos, wallabies and allies). We test three traditional adaptive explanations and one new life history hypothesis, and find very similar patterns among both ungulates and macropods. The three traditional explanations that we tested were that a “following” strategy is associated with (1) open habitat, (2) large mothers, and (3) gregariousness. Our new life-history hypothesis is that a “following strategy” is associated with delayed weaning, and thus with the “slow” end of the slow-fast mammalian life-history continuum, because offspring devote resources to locomotion rather than rapid growth. Our comparative test strongly supports the habitat structure hypothesis and provides some support for this new delayed weaning hypothesis for both ungulates and macropods. We propose that sedentary young in closed habitats benefit energetically by having milk brought to them. In open habitats, predation pressure will select against hiding. Followers will suffer slower growth to independence. Taken together, therefore, our results provide the first quantitative evidence that macropods and ungulates are convergent with respect to interspecific variation in maternal care strategy. In both clades, differences between species in the form of parental care are due to a similar interaction between habitat, social behavior, and life history. Corresponding Editor: B. Crespi  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4252  
Permanent link to this record
 

 
Author Silk, J.; Cheney, D.; Seyfarth, R. url  doi
openurl 
  Title A practical guide to the study of social relationships Type Journal Article
  Year 2013 Publication Evolutionary Anthropology: Issues, News, and Reviews Abbreviated Journal Evol. Anthropol.  
  Volume 22 Issue 5 Pages 213-225  
  Keywords observational methods; behavioral analysis; methods; dyadic relationships; social bonds  
  Abstract Behavioral ecologists have devoted considerable effort to identifying the sources of variation in individual reproductive success. Much of this work has focused on the characteristics of individuals, such as their sex and rank. However, many animals live in stable social groups and the fitness of individuals depends at least in part on the outcome of their interactions with other group members. For example, in many primate species, high dominance rank enhances access to resources and reproductive success. The ability to acquire and maintain high rank often depends on the availability and effectiveness of coalitionary support. Allies may be cultivated and coalitions may be reinforced by affiliative interactions such as grooming, food sharing, and tolerance. These findings suggest that if we want to understand the selective pressures that shape the social behavior of primates, it will be profitable to broaden our focus from the characteristics of individuals to the properties of the relationships that they form with others. The goal of this paper is to discuss a set of methods that can be used to quantify the properties of social relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6505 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5748  
Permanent link to this record
 

 
Author Chance, M.R.A.; Mead, A.P openurl 
  Title Social behaviour and primate evolution. Symposia of the Society for Experimental Biology, Type Journal Article
  Year 1953 Publication Evolution Abbreviated Journal Evolution  
  Volume 7 Issue Pages 395-439  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4786  
Permanent link to this record
 

 
Author Dunbar, Robin I. M. doi  openurl
  Title The social brain hypothesis Type Journal Article
  Year 1998 Publication Evolutionary Anthropology: Issues, News, and Reviews Abbreviated Journal Evol. Anthropol.  
  Volume 6 Issue 5 Pages 178-190  
  Keywords brain size – neocortex – social brain hypothesis – social skills – mind reading – primates  
  Abstract Conventional wisdom over the past 160 years in the cognitive and neurosciences has assumed that brains evolved to process factual information about the world. Most attention has therefore been focused on such features as pattern recognition, color vision, and speech perception. By extension, it was assumed that brains evolved to deal with essentially ecological problem-solving tasks. © 1998 Wiley-Liss, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Robin Dunbar is Professor of Evolutionary Psychology and Behavioural Ecology at the University of Liverpool, England. His research primarily focuses on the behavioral ecology of ungulates and human and nonhuman primates, and on the cognitive mechanisms and brain components that underpin the decisions that animals make. He runs a large research group, with graduate students working on many different species on four continents. Approved no  
  Call Number Equine Behaviour @ team @ Serial 4371  
Permanent link to this record
 

 
Author Beck, B.B. url  doi
openurl 
  Title Chimpocentrism: Bias in cognitive ethology Type Journal Article
  Year 1982 Publication Journal of Human Evolution Abbreviated Journal  
  Volume 11 Issue 1 Pages 3-17  
  Keywords herring gull; chimpanzee; cognition; tool-use; shell-dropping; mollusk; predation  
  Abstract Herring gulls drop hard-shelled mollusks and hermit crab-inhabited molluskan prey in order to break the shells and gain access to the edible interior. A field study of predatory shell dropping on Cape Cod, Massachusetts, U.S.A. showed that the gulls usually drop the same shell repeatedly, orient directly to dropping sites that are invisible from the point at which the mollusks are captured, drop preferentially on hard surfaces, adjust dropping heights to suit the area and elasticity of the substrate, orient directly into the wind while dropping, sever the large defensive cheliped of hermit crabs before consumption, and rinse prey that is difficult to swallow. Proficiency in prey dropping is acquired through dropping objects in play, trial-and-error learning, and perhaps, observation learning.

Observable attributes of predatory shell-dropping support inferences that the gulls are capable of extended concentration, purposefulness, mental representation of spatially and temporally displaced environmental features, cognitive mapping, cognitive modeling, selectivity, and strategy formation. Identical cognitive processes have been inferred to underlie the most sophisticated forms of chimpanzee tool-use.

Advanced cognitive capacities are not restricted to chimpanzees and other pongids, and are not associated uniquely with tool use. The chimpocentric bias should be abandoned, and reconstructions of the evolution of intelligence should be modified accordingly.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4414  
Permanent link to this record
 

 
Author Tibbetts, E.A.; Dale, J. url  doi
openurl 
  Title Individual recognition: it is good to be different Type Journal Article
  Year 2007 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol  
  Volume 22 Issue 10 Pages 529-537  
  Keywords  
  Abstract Individual recognition (IR) behavior has been widely studied, uncovering spectacular recognition abilities across a range of taxa and modalities. Most studies of IR focus on the recognizer (receiver). These studies typically explore whether a species is capable of IR, the cues that are used for recognition and the specializations that receivers use to facilitate recognition. However, relatively little research has explored the other half of the communication equation: the individual being recognized (signaler). Provided there is a benefit to being accurately identified, signalers are expected to actively broadcast their identity with distinctive cues. Considering the prevalence of IR, there are probably widespread benefits associated with distinctiveness. As a result, selection for traits that reveal individual identity might represent an important and underappreciated selective force contributing to the evolution and maintenance of genetic polymorphisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4572  
Permanent link to this record
 

 
Author Andrew, R.J. url  doi
openurl 
  Title Changes in visual responsiveness following intercollicular lesions and their effects on avoidance and attack Type Journal Article
  Year 1974 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol  
  Volume 10 Issue 4-5 Pages 400-424  
  Keywords Animals; Chickens; Humans; Male; Mutism; Superior Colliculi/*physiology; Tectum Mesencephali; Testosterone; Visual Fields; Vocalization, Animal  
  Abstract In the normal chick, conspicuous visual stimuli induce targetting and pecking together, with vocalization. All three are abolished by lesion of the intercollicular area (ICo) or of connections passing through its medial margin. After such lesions, chicks also cease to treat significant visual stimuli as if they were startling and exciting, and may delay response as a result. However, they are still able to recognise, orient accurately to, and respond appropriately to, a variety of complex visual stimuli (e.g. food grains, copulation object). In addition, they are little affected by strange surroundings. Lesion evidence suggests the mammalian subcollicular area to have similar functions to the ICo and to be homologous with it. A route (present in bird), which is well-known in mammals for its association with threat, defense and escape evoked by strange and frightening objects (amygdala-diencephalic periventricular system-central mesencephalic grey, A-DPS-CMG) is stimuli via the 2 ICo (subcollicular area). Two different mechanisms may be involved caudal to the ICo. One consists of tectal afferents which might modulate the evocation of targetting, pecking and other responses via the tectum. The other is the predorsal system of tectal efferents which may mediate such responses. Classical syndromes of tameness and unresponsiveness produced by various interruptions of the A-DPS-CMG route may depend on interruption of connections to these midbrain mechanisms. Attack is depressed by ICo lesions as one aspect of reduced responsiveness to conspicuous and startling visual stimuli. Avoidance, which is apparently mediated by a separate system, much as in Anura, is facilitated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1169102 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4626  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis” argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print