|   | 
Details
   web
Records
Author Keay, J.M.; Singh, J.; Gaunt, M.C.; Kaur, T.
Title Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review Type Journal Article
Year 2006 Publication Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians Abbreviated Journal J Zoo Wildl Med
Volume 37 Issue 3 Pages 234-244
Keywords Animals; *Animals, Wild/metabolism; Chromatography, High Pressure Liquid/methods/veterinary; Circadian Rhythm; Conservation of Natural Resources; *Ecosystem; Feces/*chemistry; Glucocorticoids/*analysis/metabolism; Humans; Seasons; Species Specificity; Specimen Handling/methods/veterinary; Stress, Psychological/*metabolism
Abstract Conservation medicine is a discipline in which researchers and conservationists study and respond to the dynamic interplay between animals, humans, and the environment. From a wildlife perspective, animal species are encountering stressors from numerous sources. With the rapidly increasing human population, a corresponding increased demand for food, fuel, and shelter; habitat destruction; and increased competition for natural resources, the health and well-being of wild animal populations is increasingly at risk of disease and endangerment. Scientific data are needed to measure the impact that human encroachment is having on wildlife. Nonbiased biometric data provide a means to measure the amount of stress being imposed on animals from humans, the environment, and other animals. The stress response in animals functions via glucocorticoid metabolism and is regulated by the hypothalamic-pituitary-adrenal axis. Fecal glucocorticoids, in particular, may be an extremely useful biometric test, since sample collection is noninvasive to subjects and, therefore, does not introduce other variables that may alter assay results. For this reason, many researchers and conservationists have begun to use fecal glucocorticoids as a means to measure stress in various animal species. This review article summarizes the literature on many studies in which fecal glucocorticoids and their metabolites have been used to assess stress levels in various mammalian species. Variations between studies are the main focus of this review. Collection methods, storage conditions, shipping procedures, and laboratory techniques utilized by different researchers are discussed.
Address Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 0442 Duck Pond Drive, Blacksburg, Virginia 24061, USA
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1042-7260 ISBN Medium
Area Expedition Conference
Notes PMID:17319120 Approved no
Call Number refbase @ user @ Serial 616
Permanent link to this record
 

 
Author Shultz, S.; Dunbar, R.I.M.
Title Both social and ecological factors predict ungulate brain size Type Journal Article
Year 2006 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 273 Issue 1583 Pages 207-215
Keywords Animals; Artiodactyla/*anatomy & histology/*physiology; Brain/*anatomy & histology/physiology; *Ecosystem; Organ Size; Perissodactyla/*anatomy & histology/*physiology; *Social Behavior
Abstract Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.
Address School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK. susanne.shultz@liv.ac.uk
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:16555789 Approved no
Call Number Serial 2098
Permanent link to this record