|   | 
Details
   web
Records
Author Hertsch, B.; Becker, C.
Title [Occurrence of aseptic necrosis of the palmar and plantar ligament in the horse--a contribution to the differentiation of sesamoid bone diseases] Type Journal Article
Year 1986 Publication DTW. Deutsche tierarztliche Wochenschrift Abbreviated Journal Dtsch Tierarztl Wochenschr
Volume 93 Issue 6 Pages 263-266
Keywords Animals; Diagnosis, Differential; Horse Diseases/*pathology; Horses; Ligaments, Articular/*pathology; Osteonecrosis/*pathology; Sesamoid Bones/*pathology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language German Summary Language Original Title Zum Vorkommen der aseptischen Nekrose im Ligamentum palmare bzw. plantare beim Pferd--ein Beitrag zur Differenzierung der Gleichbeinerkrankungen
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-6593 ISBN Medium
Area Expedition Conference
Notes (up) PMID:3527654 Approved no
Call Number refbase @ user @ Serial 150
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K.
Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
Year 1982 Publication The Journal of Biological Chemistry Abbreviated Journal J Biol Chem
Volume 257 Issue 5 Pages 2267-2273
Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature
Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9258 ISBN Medium
Area Expedition Conference
Notes (up) PMID:6277891 Approved no
Call Number Equine Behaviour @ team @ Serial 3807
Permanent link to this record
 

 
Author Andersson, P.; Kvassman, J.; Lindstrom, A.; Olden, B.; Pettersson, G.
Title Effect of NADH on the pKa of zinc-bound water in liver alcohol dehydrogenase Type Journal Article
Year 1981 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem
Volume 113 Issue 3 Pages 425-433
Keywords Alcohol Oxidoreductases/*metabolism; Aldehydes/metabolism; Animals; Binding Sites; Cinnamates/metabolism; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Liver/*metabolism; NAD/*metabolism; Water/metabolism; Zinc/metabolism
Abstract Equilibrium constants for coenzyme binding to liver alcohol dehydrogenase have been determined over the pH range 10--12 by pH-jump stop-flow techniques. The binding of NADH or NAD+ requires the protonated form of an ionizing group (distinct from zinc-bound water) with a pKa of 10.4. Complex formation with NADH exhibits an additional dependence on the protonation state of an ionizing group with a pKa of 11.2. The binding of trans-N,N-dimethylaminocinnamaldehyde to the enzyme . NADH complex is prevented by ionization of the latter group. It is concluded from these results that the pKa-11.2-dependence of NADH binding most likely derives from ionization of the water molecule bound at the catalytic zinc ion of the enzyme subunit. The pKa value of 11.2 thus assigned to zinc-bound water in the enzyme . NADH complex appears to be typical for an aquo ligand in the inner-sphere ligand field provided by the zinc-binding amino acid residues in liver alcohol dehydrogenase. This means that the pKa of metal-bound water in zinc-containing enzymes can be assumed to correlate primarily with the number of negatively charged protein ligands coordinated by the active-site zinc ion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2956 ISBN Medium
Area Expedition Conference
Notes (up) PMID:7011796 Approved no
Call Number Equine Behaviour @ team @ Serial 3810
Permanent link to this record