|   | 
Details
   web
Records
Author Overli, O.; Korzan, W.J.; Hoglund, E.; Winberg, S.; Bollig, H.; Watt, M.; Forster, G.L.; Barton, B.A.; OVerli, E.; Renner, K.J.; Summers, C.H.
Title Stress coping style predicts aggression and social dominance in rainbow trout Type Journal Article
Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav
Volume 45 Issue 4 Pages 235-241
Keywords Adaptation, Psychological/physiology; Aggression/*physiology; Animals; *Dominance-Subordination; Female; *Hierarchy, Social; Hydrocortisone/blood; Individuality; Male; Matched-Pair Analysis; Oncorhynchus mykiss/*physiology; Stress/*physiopathology
Abstract Social stress is frequently used as a model for studying the neuroendocrine mechanisms underlying stress-induced behavioral inhibition, depression, and fear conditioning. It has previously been shown that social subordination may result in increased glucocorticoid release and changes in brain signaling systems. However, it is still an open question which neuroendocrine and behavioral differences are causes, and which are consequences of social status. Using juvenile rainbow trout of similar size and with no apparent differences in social history, we demonstrate that the ability to win fights for social dominance can be predicted from the duration of a behavioral response to stress, in this case appetite inhibition after transfer to a new environment. Moreover, stress responsiveness in terms of confinement-induced changes in plasma cortisol was negatively correlated to aggressive behavior. Fish that exhibited lower cortisol responses to a standardized confinement test were markedly more aggressive when being placed in a dominant social position later in the study. These findings support the view that distinct behavioral-physiological stress coping styles are present in teleost fish, and these coping characteristics influence both social rank and levels of aggression.
Address Biology Department and Neuroscience Group, University of South Dakota, Vermillion, SD 57069, USA. oyvind.overli@bio.uio.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-506X ISBN Medium
Area Expedition Conference
Notes (up) PMID:15053939 Approved no
Call Number Equine Behaviour @ team @ Serial 4192
Permanent link to this record
 

 
Author Zentall, T.R.
Title Action imitation in birds Type Journal Article
Year 2004 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 32 Issue 1 Pages 15-23
Keywords Adaptation, Psychological; Animals; *Birds; *Imitative Behavior; Imprinting (Psychology); *Learning; Motivation; Psychological Theory; *Social Environment; *Social Facilitation; Vocalization, Animal
Abstract Action imitation, once thought to be a behavior almost exclusively limited to humans and the great apes, surprisingly also has been found in a number of bird species. Because imitation has been viewed by some psychologists as a form of intelligent behavior, there has been interest in how it is distributed among animal species. Although the mechanisms responsible for action imitation are not clear, we are now at least beginning to understand the conditions under which it occurs. In this article, I try to identify and differentiate the various forms of socially influenced behavior (species-typical social reactions, social effects on motivation, social effects on perception, socially influenced learning, and action imitation) and explain why it is important to differentiate imitation from other forms of social influence. I also examine some of the variables that appear to be involved in the occurrence of imitation. Finally, I speculate about why a number of bird species, but few mammal species, appear to imitate.
Address Department of Psychology, University of Kentucky, Lexington, Kentucky 40506, USA. zentall@uky.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15161137 Approved no
Call Number refbase @ user @ Serial 230
Permanent link to this record
 

 
Author Fragaszy, D.; Visalberghi, E.
Title Socially biased learning in monkeys Type Journal Article
Year 2004 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 32 Issue 1 Pages 24-35
Keywords Adaptation, Psychological; Animal Communication; Animals; Behavior, Animal; *Feeding Behavior/psychology; Food Preferences/psychology; Haplorhini/*psychology; *Imitative Behavior; Imprinting (Psychology); *Learning; *Social Environment; *Social Facilitation
Abstract We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.
Address Psychology Department, University of Georgia, Athens, Georgia 30602, USA. doree@uga.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15161138 Approved no
Call Number refbase @ user @ Serial 828
Permanent link to this record
 

 
Author Whiten, A.; Horner, V.; Litchfield, C.A.; Marshall-Pescini, S.
Title How do apes ape? Type Journal Article
Year 2004 Publication Learning & Behavior Abbreviated Journal Learn. Behav.
Volume 32 Issue 1 Pages 36-52
Keywords Adaptation, Psychological; Animals; Behavior, Animal; Hominidae/*psychology; *Imitative Behavior; Imprinting (Psychology); *Learning; Psychological Theory; *Social Environment; *Social Facilitation
Abstract In the wake of telling critiques of the foundations on which earlier conclusions were based, the last 15 years have witnessed a renaissance in the study of social learning in apes. As a result, we are able to review 31 experimental studies from this period in which social learning in chimpanzees, gorillas, and orangutans has been investigated. The principal question framed at the beginning of this era, Do apes ape? has been answered in the affirmative, at least in certain conditions. The more interesting question now is, thus, How do apes ape? Answering this question has engendered richer taxonomies of the range of social-learning processes at work and new methodologies to uncover them. Together, these studies suggest that apes ape by employing a portfolio of alternative social-learning processes in flexibly adaptive ways, in conjunction with nonsocial learning. We conclude by sketching the kind of decision tree that appears to underlie the deployment of these alternatives.
Address Centre for Social Learning and Cognitive Evolution, Scottish Primate Research Group, School of Psychology, University of St. Andrews, St. Andrews, Fife, Scotland. a.whiten@st-and.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15161139 Approved no
Call Number refbase @ user @ Serial 734
Permanent link to this record
 

 
Author Nicol, C.J.
Title Development, direction, and damage limitation: social learning in domestic fowl Type Journal Article
Year 2004 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 32 Issue 1 Pages 72-81
Keywords Adaptation, Psychological; Age Factors; Animals; Behavior, Animal; *Chickens; *Feeding Behavior; *Food Preferences; *Imitative Behavior; Imprinting (Psychology); *Learning; Maternal Behavior; Reinforcement (Psychology); *Social Environment; *Social Facilitation
Abstract This review highlights two areas of particular interest in the study of social learning in fowl. First, the role of social learning in the development of feeding and foraging behavior in young chicks and older birds is described. The role of the hen as a demonstrator and possible teacher is considered, and the subsequent social influence of brood mates and other companions on food avoidance and food preference learning is discussed. Second, the way in which work on domestic fowl has contributed to an understanding of the importance of directed social learning is examined. The well-characterized hierarchical social organization of small chicken flocks has been used to design studies which demonstrate that the probability of social transmission is strongly influenced by social relationships between birds. The practical implications of understanding the role of social learning in the spread of injurious behaviors in this economically important species are briefly considered.
Address Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol, England. c.j.nicol@bristol.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15161142 Approved no
Call Number refbase @ user @ Serial 75
Permanent link to this record
 

 
Author Palleroni, A.; Hauser, M.; Marler, P.
Title Do responses of galliform birds vary adaptively with predator size? Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 3 Pages 200-210
Keywords Adaptation, Psychological; Animals; *Avoidance Learning; *Behavior, Animal; Body Size; Chickens; Female; Food Chain; Male; *Pattern Recognition, Visual; *Predatory Behavior; *Recognition (Psychology); Risk Assessment
Abstract Past studies of galliform anti-predator behavior show that they discriminate between aerial and ground predators, producing distinctive, functionally referential vocalizations to each class. Within the category of aerial predators, however, studies using overhead models, video images and observations of natural encounters with birds of prey report little evidence that galliforms discriminate between different raptor species. This pattern suggests that the aerial alarm response may be triggered by general features of objects moving in the air. To test whether these birds are also sensitive to more detailed differences between raptor species, adult chickens with young were presented with variously sized trained raptors (small, intermediate, large) under controlled conditions. In response to the small hawk, there was a decline in anti-predator aggression and in aerial alarm calling as the young grew older and less vulnerable to attack by a hawk of this size. During the same developmental period, responses to the largest hawk, which posed the smallest threat to the young at all stages, did not change; there were intermediate changes at this time in response to the middle-sized hawk. Thus the anti-predator behavior of the adult birds varied in an adaptive fashion, changing as a function of both chick age and risk. We discuss these results in light of current issues concerning the cognitive mechanisms underlying alarm calling behavior in animals.
Address Primate Cognitive Neuroscience Laboratory, Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA, 02138, USA. aliparti@wjh.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15660209 Approved no
Call Number Equine Behaviour @ team @ Serial 2496
Permanent link to this record
 

 
Author Zhang, T.-Y.; Parent, C.; Weaver, I.; Meaney, M.J.
Title Maternal programming of individual differences in defensive responses in the rat Type Journal Article
Year 2004 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci
Volume 1032 Issue Pages 85-103
Keywords Adaptation, Biological; Aggression/*physiology; Animals; Evolution; Female; Gene Expression/physiology; Humans; Individuality; *Maternal Behavior; Phenotype; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Stress, Psychological/physiopathology
Abstract This paper describes the results of a series of studies showing that variations in mother-pup interactions program the development of individual differences in behavioral and endocrine stress responses in the rat. These effects are associated with altered expression of genes in brain regions, such as the amygdala, hippocampus, and hypothalamus, that regulate the expression of stress responses. Studies from evolutionary biology suggest that such “maternal effects” are common and often associated with variations in the quality of the maternal environment. Together these findings suggest an epigenetic process whereby the experience of the mother alters the nature of the parent-offspring interactions and thus the phenotype of the offspring.
Address McGill Program for the Study of Behavior, Genes and Environment, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 boul. LaSalle, Montreal (Quebec), Canada H4H 1R3
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15677397 Approved no
Call Number Equine Behaviour @ team @ Serial 4132
Permanent link to this record
 

 
Author Lafferty, K.D.
Title Look what the cat dragged in: do parasites contribute to human cultural diversity? Type Journal Article
Year 2005 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 68 Issue 3 Pages 279-282
Keywords Adaptation, Physiological/physiology; Adaptation, Psychological/physiology; Animals; Behavior/physiology; *Behavior Control; Cats/*parasitology; Cultural Diversity; Host-Parasite Relations; Humans; Personality/*physiology; Toxoplasma/*physiology; Toxoplasmosis/parasitology/*psychology
Abstract
Address Western Ecological Research Center, United States Geological Survey, c/o Marine Science Institute, University of California, Santa Barbara, CA 93106, USA. lafferty@lifesci.ucsb.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15792708 Approved no
Call Number Equine Behaviour @ team @ Serial 4148
Permanent link to this record
 

 
Author Young, L.E.; Rogers, K.; Wood, J.L.N.
Title Left ventricular size and systolic function in Thoroughbred racehorses and their relationships to race performance Type Journal Article
Year 2005 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol
Volume 99 Issue 4 Pages 1278-1285
Keywords *Adaptation, Physiological; Aging/physiology; Animal Husbandry; Animals; *Echocardiography; Female; Heart/*physiology; Heart Ventricles; Horses/*physiology; Male; *Physical Conditioning, Animal; Running/*physiology; Stroke Volume; Systole; Task Performance and Analysis
Abstract Cardiac morphology in human athletes is known to differ, depending on the sports-specific endurance component of their events, whereas anecdotes abound about superlative athletes with large hearts. As the heart determines stroke volume and maximum O(2) uptake in mammals, we undertook a study to test the hypothesis that the morphology of the equine heart would differ between trained horses, depending on race type, and that left ventricular size would be greatest in elite performers. Echocardiography was performed in 482 race-fit Thoroughbreds engaged in either flat (1,000-2,500 m) or jump racing (3,200-6,400 m). Body weight and sex-adjusted measures of left ventricular size were largest in horses engaged in jump racing over fixed fences, compared with horses running shorter distances on the flat (range 8-16%). The observed differences in cardiac morphologies suggest that subtle differences in training and competition result in cardiac adaptations that are appropriate to the endurance component of the horses' event. Derived left ventricular mass was strongly associated with published rating (quality) in horses racing over longer distances in jump races (P < or = 0.001), but less so for horses in flat races. Rather, left ventricular ejection fraction and left ventricular mass combined were positively associated with race rating in older flat racehorses running over sprint (<1,408 m) and longer distances (>1,408 m), explaining 25-35% of overall variation in performance, as well as being closely associated with performance in longer races over jumps (23%). These data provide the first direct evidence that cardiac size influences athletic performance in a group of mammalian running athletes.
Address Centre for Equine Studies, Animal Health Trust, Newmarket, Suffolk, UK. lesley.young@aht.org.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8750-7587 ISBN Medium
Area Expedition Conference
Notes (up) PMID:15920096 Approved no
Call Number Equine Behaviour @ team @ Serial 3768
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record