|   | 
Details
   web
Records
Author Bates, L.A.; Byrne, R.W.
Title Creative or created: Using anecdotes to investigate animal cognition Type Journal Article
Year 2007 Publication Methods Abbreviated Journal Methods
Volume 42 Issue 1 Pages 12-21
Keywords Anecdote; Creativity; Intelligence; Deception; Innovation; African elephant
Abstract In non-human animals, creative behaviour occurs spontaneously only at low frequencies, so is typically missed by standardised observational methods. Experimental approaches have tended to rely overly on paradigms from child development or adult human cognition, which may be inappropriate for species that inhabit very different perceptual worlds and possess quite different motor capacities than humans. The analysis of anecdotes offers a solution to this impasse, provided certain conditions are met. To be reliable, anecdotes must be recorded immediately after observation, and only the records of scientists experienced with the species and the individuals concerned should be used. Even then, interpretation of a single record is always ambiguous, and analysis is feasible only when collation of multiple records shows that a behaviour pattern occurs repeatedly under similar circumstances. This approach has been used successfully to study a number of creative capacities of animals: the distribution, nature and neural correlates of deception across the primate order; the occurrence of teaching in animals; and the neural correlates of several aptitudes--in birds, foraging innovation, and in primates, innovation, social learning and tool-use. Drawing on these approaches, we describe the use of this method to investigate a new problem, the cognition of the African elephant, a species whose sheer size and evolutionary distance from humans renders the conventional methods of comparative psychology of little use. The aim is both to chart the creative cognitive capacities of this species, and to devise appropriate experimental methods to confirm and extend previous findings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1046-2023 ISBN Medium
Area Expedition Conference
Notes (up) also special issue: Neurocognitive Mechanisms of Creativity: A Toolkit Approved no
Call Number Equine Behaviour @ team @ Serial 6185
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C.
Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
Year 2007 Publication Evolution Abbreviated Journal
Volume 61 Issue 12 Pages 2811-2821
Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates
Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) doi: 10.1111/j.1558-5646.2007.00229.x Approved no
Call Number Equine Behaviour @ team @ Serial 4781
Permanent link to this record
 

 
Author Bonin, S.J.; Clayton, H.M.; Lanovaz, J.L.; Johnston, T.
Title Comparison of mandibular motion in horses chewing hay and pellets Type Journal Article
Year 2007 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet. J.
Volume 39 Issue 3 Pages 258-262
Keywords horse; temporomandibular joint; mastication; kinematics
Abstract Summary Reasons for performing study: Previous studies have suggested that temporomandibular joint (TMJ) kinematics depend on the type of food being masticated, but accurate measurements of TMJ motion in horses chewing different feeds have not been published. Hypothesis: The temporomandibular joint has a larger range of motion when horses chew hay compared to pellets. Methods: An optical motion capture system was used to track skin markers on the skull and mandible of 7 horses as they chewed hay and pellets. A virtual marker was created on the midline between the mandibles at the level of the 4th premolar teeth to represent the overall motion of the mandible relative to the skull during the chewing cycle. Results: Frequency of the chewing cycles was lower for hay than for pellets. Excursions of the virtual mandibular marker were significantly larger in all 3 directions when chewing hay compared to pellets. The mean velocity of the virtual mandibular marker during the chewing cycle was the same when chewing the 2 feeds. Conclusions: The range of mediolateral displacement of the mandible was sufficient to give full occlusal contact of the upper and lower dental arcades when chewing hay but not when chewing pellets. Potential relevance: These findings support the suggestion that horses receiving a diet high in concentrate feeds may require more frequent dental prophylactic examinations and treatments to avoid the development of dental irregularities associated with smaller mandibular excursions during chewing.
Address
Corporate Author Thesis
Publisher American Medical Association (AMA) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes (up) doi: 10.2746/042516407X157792 Approved no
Call Number Equine Behaviour @ team @ Serial 6513
Permanent link to this record
 

 
Author Bannasch, D.; Rinaldo, C.; Millon, L.; Latson, K.; Spangler, T.; Hubberty, S.; Galuppo, L.; Lowenstine, L.
Title SRY negative 64,XX intersex phenotype in an American saddlebred horse Type Journal Article
Year 2007 Publication Veterinary Journal (London, England : 1997) Abbreviated Journal Vet J
Volume 173 Issue 2 Pages 437-439
Keywords Animals; Female; Genitalia/abnormalities; Hermaphroditism/*veterinary; Horse Diseases/*diagnosis/genetics; Horses/*genetics/*physiology; Karyotyping; Phenotype; Sex Differentiation; Sex Differentiation Disorders/diagnosis/veterinary; Sex-Determining Region Y Protein/genetics/*metabolism
Abstract A female American saddlebred horse was presented for surgical correction of a possible pseudohermaphrodite condition. The horse had abnormal external genitalia and exhibited stallion-like behaviour. No evidence of uterine or ovarian tissue was identified on laparoscopic examination, but hypoplastic testicular-like tissue was removed, although this was found to contain no spermatogonia upon histopathological examination. A karyotype was performed and showed the normal chromosomal complement for a female horse (64,XX). Polymerase chain reaction to detect the SRY gene was negative in peripheral blood as well as the testicular-like tissue. This case represents the first report of an SRY negative XX-male sex reversal intersex phenotype, which is a potentially inherited condition, in an American saddlebred horse.
Address Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. dlbannasch@ucdavis.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16386440 Approved no
Call Number Serial 1882
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G.
Title How fish do geometry in large and in small spaces Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 47-54
Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception
Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.
Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16794851 Approved no
Call Number Equine Behaviour @ team @ Serial 2462
Permanent link to this record
 

 
Author Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L.
Title Orientation in the cuttlefish Sepia officinalis: response versus place learning Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 29-36
Keywords Animals; *Decapodiformes; Exploratory Behavior; *Maze Learning; Memory; *Space Perception
Abstract Several studies have demonstrated that mammals, birds and fish use comparable spatial learning strategies. Unfortunately, except in insects, few studies have investigated spatial learning mechanisms in invertebrates. Our study aimed to identify the strategies used by cuttlefish (Sepia officinalis) to solve a spatial task commonly used with vertebrates. A new spatial learning procedure using a T-maze was designed. In this maze, the cuttlefish learned how to enter a dark and sandy compartment. A preliminary test confirmed that individual cuttlefish showed an untrained side-turning preference (preference for turning right or left) in the T-maze. This preference could be reliably detected in a single probe trial. In the following two experiments, each individual was trained to enter the compartment opposite to its side-turning preference. In Experiment 1, distal visual cues were provided around the maze. In Experiment 2, the T-maze was surrounded by curtains and two proximal visual cues were provided above the apparatus. In both experiments, after acquisition, strategies used by cuttlefish to orient in the T-maze were tested by creating a conflict between the formerly rewarded algorithmic behaviour (turn, response learning) and the visual cues identifying the goal (place learning). Most cuttlefish relied on response learning in Experiment 1; the two strategies were used equally often in Experiment 2. In these experiments, the salience of cues provided during the experiment determined whether cuttlefish used response or place learning to solve this spatial task. Our study demonstrates for the first time the presence of multiple spatial strategies in cuttlefish that appear to closely parallel those described in vertebrates.
Address Laboratoire de Physiologie du Comportement des Cephalopodes, Universite de Caen, Esplanade de la Paix, 14032, Caen cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16794852 Approved no
Call Number Equine Behaviour @ team @ Serial 2461
Permanent link to this record
 

 
Author Hostetter, A.B.; Russell, J.L.; Freeman, H.; Hopkins, W.D.
Title Now you see me, now you don't: evidence that chimpanzees understand the role of the eyes in attention Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 55-62
Keywords Animal Husbandry/methods; Animals; *Attention; Awareness; Female; Fixation, Ocular/*physiology; Humans; Male; Pan troglodytes/*psychology; *Social Behavior; *Social Perception
Abstract Chimpanzees appear to understand something about the attentional states of others; in the present experiment, we investigated whether they understand that the attentional state of a human is based on eye gaze. In all, 116 adult chimpanzees were offered food by an experimenter who engaged in one of the four experimental manipulations: eyes closed, eyes open, hand over eyes, and hand over mouth. The communicative behavior of the chimpanzees was observed. More visible behaviors were produced when the experimenter's eyes were visible than when the experimenter's eyes were not visible. More vocalizations were produced when the experimenter's eyes were closed than when they were open, but there were no differences in other attention getting behaviors. There was no effect of age or rearing history. The results suggest that chimpanzees use the presence of the eyes as a cue that their visual gestures will be effective.
Address Department of Psychology, University of Wisconsin-Madison, 1202 W. Johnson Street, Madison, WI 53706, USA. abhostetter@wisc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16847659 Approved no
Call Number Equine Behaviour @ team @ Serial 2457
Permanent link to this record
 

 
Author Agrillo, C.; Dadda, M.; Bisazza, A.
Title Quantity discrimination in female mosquitofish Type Journal Article
Year 2007 Publication Animal cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 63-70
Keywords Animals; Cognition; *Cyprinodontiformes; *Discrimination Learning; Female; Male; Mathematics; *Pattern Recognition, Visual
Abstract The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.
Address Department of General Psychology, University of Padova, via Venezia 8, 35131, Padova, Italy. christian.agrillo@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16868736 Approved no
Call Number refbase @ user @ Serial 339
Permanent link to this record
 

 
Author Beran, M.J.
Title Rhesus monkeys (Macaca mulatta) succeed on a computerized test designed to assess conservation of discrete quantity Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages 37-45
Keywords Animals; *Cognition; *Judgment; Macaca mulatta/*psychology; Male; Mathematics; *Pattern Recognition, Visual; Uncertainty
Abstract Conservation of quantity occurs through recognition that changes in the physical arrangement of a set of items do not change the quantity of items in that set. Rhesus monkeys (Macaca mulatta) were presented with a computerized quantity judgment task. Monkeys were rewarded for selecting the greater quantity of items in one of two horizontal arrays of items on the screen. On some trials, after a correct selection, no reward was given but one of the arrays was manipulated. In some cases, this manipulation involved moving items closer together or farther apart to change the physical arrangement of the array without changing the quantity of items in the array. In other cases, additional items were added to the initially smaller array so that it became quantitatively larger. Monkeys then made another selection from the two rows of items. Monkeys were sensitive to these manipulations, changing their selections when the number of items in the rows changed but not when the arrangement only was changed. Therefore, monkeys responded on the basis of the quantity of items, and they were not distracted by non-quantitative manipulations of the sets.
Address Language Research Center, Georgia State University, 3401 Panthersville Road, Decatur, GA 30034, USA. mjberan@yahoo.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16868737 Approved no
Call Number Equine Behaviour @ team @ Serial 2455
Permanent link to this record
 

 
Author Neiworth, J.J.; Hassett, J.M.; Sylvester, C.J.
Title Face processing in humans and new world monkeys: the influence of experiential and ecological factors Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 125-134
Keywords Adolescent; Adult; Animals; Ecology; *Face; Female; Humans; Male; Pan troglodytes/*physiology; Species Specificity; Visual Perception/*physiology
Abstract This study tests whether the face-processing system of humans and a nonhuman primate species share characteristics that would allow for early and quick processing of socially salient stimuli: a sensitivity toward conspecific faces, a sensitivity toward highly practiced face stimuli, and an ability to generalize changes in the face that do not suggest a new identity, such as a face differently oriented. The look rates by adult tamarins and humans toward conspecific and other primate faces were examined to determine if these characteristics are shared. A visual paired comparison (VPC) task presented subjects with either a human face, chimpanzee face, tamarin face, or an object as a sample, and then a pair containing the previous stimulus and a novel stimulus was presented. The stimuli were either presented all in an upright orientation, or all in an inverted orientation. The novel stimulus in the pair was either an orientation change of the same face/object or a new example of the same type of face/object, and the stimuli were shown either in an upright orientation or in an inverted orientation. Preference to novelty scores revealed that humans attended most to novel individual human faces, and this effect decreased significantly if the stimuli were inverted. Tamarins showed preferential looking toward novel orientations of previously seen tamarin faces in the upright orientation, but not in an inverted orientation. Similarly, their preference to look longer at novel tamarin and human faces within the pair was reduced significantly with inverted stimuli. The results confirmed prior findings in humans that novel human faces generate more attention in the upright than in the inverted orientation. The monkeys also attended more to faces of conspecifics, but showed an inversion effect to orientation change in tamarin faces and to identity changes in tamarin and human faces. The results indicate configural processing restricted to particular kinds of primate faces by a New World monkey species, with configural processing influenced by life experience (human faces and tamarin faces) and specialized to process orientation changes specific to conspecific faces.
Address Department of Psychology, Carleton College, Northfield, MN 55057, USA. jneiwort@carleton.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16909230 Approved no
Call Number Equine Behaviour @ team @ Serial 2454
Permanent link to this record