toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Romero, L.M.; Dickens, M.J.; Cyr, N.E. url  doi
openurl 
  Title The reactive scope model — A new model integrating homeostasis, allostasis, and stress Type Journal Article
  Year 2009 Publication Hormones and Behavior Abbreviated Journal Horm. Behav.  
  Volume 55 Issue 3 Pages 375-389  
  Keywords Stress; Allostasis; Glucocorticoids; Fight-or-flight; Homeostasis  
  Abstract Allostasis, the concept of maintaining stability through change, has been proposed as a term and a model to replace the ambiguous term of stress, the concept of adequately or inadequately coping with threatening or unpredictable environmental stimuli. However, both the term allostasis and its underlying model have generated criticism. Here we propose the Reactive Scope Model, an alternate graphical model that builds on the strengths of allostasis and traditional concepts of stress yet addresses many of the criticisms. The basic model proposes divergent effects in four ranges for the concentrations or levels of various physiological mediators involved in responding to stress. (1) Predictive Homeostasis is the range encompassing circadian and seasonal variation — the concentrations/levels needed to respond to predictable environmental changes. (2) Reactive Homeostasis is the range of the mediator needed to respond to unpredictable or threatening environmental changes. Together, Predictive and Reactive Homeostasis comprise the normal reactive scope of the mediator for that individual. Concentrations/levels above the Reactive Homeostasis range is (3) Homeostatic Overload, and concentrations/levels below the Predictive Homeostasis range is (4) Homeostatic Failure. These two ranges represent concentrations/levels with pathological effects and are not compatible with long-term (Homeostatic Overload) or short-term (Homeostatic Failure) health. Wear and tear is the concept that there is a cost to maintaining physiological systems in the Reactive Homeostasis range, so that over time these systems gradually lose their ability to counteract threatening and unpredictable stimuli. Wear and tear can be modeled by a decrease in the threshold between Reactive Homeostasis and Homeostatic Overload, i.e. a decrease in reactive scope. This basic model can then be modified by altering the threshold between Reactive Homeostasis and Homeostatic Overload to help understand how an individual's response to environmental stressors can differ depending upon factors such as prior stressors, dominance status, and early life experience. We illustrate the benefits of the Reactive Scope Model and contrast it with the traditional model and with allostasis in the context of chronic malnutrition, changes in social status, and changes in stress responses due to early life experiences. The Reactive Scope Model, as an extension of allostasis, should be useful to both biomedical researchers studying laboratory animals and humans, as well as ecologists studying stress in free-living animals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506x ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Equine Behaviour @ team @ Serial 5583  
Permanent link to this record
 

 
Author Romero L. M. url  doi
openurl 
  Title Using the reactive scope model to understand why stress physiology predicts survival during starvation in Galápagos marine iguanas Type Journal Article
  Year 2011 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume Issue Pages  
  Keywords Reactive scope; Allostasis; Glucocorticoids; Stress; Survival  
  Abstract Even though the term “stress” is widely used, a precise definition is notoriously difficult. Notwithstanding this difficulty, stress continues to be an important concept in biology because it attempts to describe how animals cope with environmental change under emergency conditions. Without a precise definition, however, it becomes nearly impossible to make testable a priori predictions about how physiological and hormonal systems will respond to emergency conditions and what the ultimate impact on the animal will be. The reactive scope model is a recent attempt to formulate testable predictions. This model provides a physiological basis to explain why corticosterone negative feedback, but not baseline corticosterone concentrations, corticosterone responses to acute stress, or the interrenal capacity to secrete corticosterone, is correlated with survival during famine conditions in Galápagos marine iguanas. Reactive scope thus provides a foundation for interpreting and predicting physiological stress responses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Equine Behaviour @ team @ Serial 5584  
Permanent link to this record
 

 
Author Reyna-Garfias, H.; Miliar, A.; Jarillo-Luna, A.; Rivera-Aguilar, V.; Pacheco-Yepez, J.; Baeza, I.; Campos-Rodríguez, R. url  doi
openurl 
  Title Repeated restraint stress increases IgA concentration in rat small intestine Type Journal Article
  Year 2010 Publication Brain, Behavior, and Immunity Abbreviated Journal  
  Volume 24 Issue 1 Pages 110-118  
  Keywords Restraint-stress; IgA; Small intestine; Polymeric Ig receptor; Catecholamines; Glucocorticoids  
  Abstract The most abundant intestinal immunoglobulin and first line of specific immunological defense against environmental antigens is secretory immunoglobulin A. To better understand the effect of repeated stress on the secretion of intestinal IgA, the effects of restraint stress on IgA concentration and mRNA expression of the gene for the alpha-chain of IgA was assessed in both the duodenum and ileum of the rats. Restraint stress induced an increase in intestinal IgA, which was blocked by an adrenalectomy, suggesting a role of catecholamines and glucocorticoids. Whereas the blocking of glucocorticoid receptors by RU-486 did not affect the increased IgA concentration, it did reduce IgA alpha-chain mRNA expression in both segments, indicating a possible mediation on the part of glucocorticoids in IgA secretion by individual cells. Treatment with corticosterone significantly increased both the IgA concentration and IgA alpha-chain mRNA expression in ileum but not in duodenum, suggesting that glucocorticoids may act directly on IgA-antibody forming cells to increase IgA secretion in the former segment. A probable role by catecholamines was evidenced by the reduction in IgA concentration and IgA alpha-chain mRNA expression in both segments after a chemical sympathectomy with 6-hydroxydopamine (6-OHDA). Additionally, norepinephrine significantly reduced IgA alpha-chain mRNA levels but increased pIgR mRNA expression and IgA concentration in both intestinal segments. We propose that the increased intestinal IgA levels caused by repeated restraint stress is likely due to the effects of catecholamines on the transport of plgA across the epithelium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0889-1591 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Equine Behaviour @ team @ Serial 6002  
Permanent link to this record
 

 
Author Palme, R.; Moestl, E. openurl 
  Title Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood Type Journal Article
  Year 1997 Publication Zeitschrift für Säugetierkunde Abbreviated Journal J. Mammal. Biol.  
  Volume 62 Issue Pages 192-197  
  Keywords glucocorticoids, metabolites, animal biology, sheep, immunoenzyme techniques,  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Equine Behaviour @ team @ Serial 6044  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print