toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dugatkin, L.A.; Mesterton-Gibbons, M. url  doi
openurl 
  Title Cooperation among unrelated individuals: reciprocal altruism, by-product mutualism and group selection in fishes Type Journal Article
  Year 1996 Publication Biosystems Abbreviated Journal Biosystems  
  Volume 37 Issue 1-2 Pages 19-30  
  Keywords By-product mutualism; Cooperative behavior; Fish; Reciprocal altruism; Trait-group selection  
  Abstract Cooperation among unrelated individuals can evolve not only via reciprocal altruism but also via trait-group selection or by-product mutualism (or some combination of all three categories). Therefore the (iterated) prisoner's dilemma is an insufficient paradigm for studying the evolution of cooperation. We replace this game by the cooperator's dilemma, which is more versatile because it enables all three categories of cooperative behavior to be examined within the framework of a single theory. Controlled studies of cooperation among fish provide examples of each category of cooperation. Specifically, we describe reciprocal altruism among simultaneous hermaphrodites that swap egg parcels, group-selected cooperation among fish that inspect dangerous predators and by-product mutualism in the cooperative foraging of coral-reef fish.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number refbase @ user @ Serial 481  
Permanent link to this record
 

 
Author James, R.; Bennett, P.G.; Krause, J. url  openurl
  Title Geometry for mutualistic and selfish herds: the limited domain of danger Type Journal Article
  Year 2004 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 228 Issue 1 Pages 107-113  
  Keywords Aggregation; Selfish herd; Limited domains  
  Abstract We present a two-dimensional individual-based model of aggregation behaviour in animals by introducing the concept of a “limited domain of danger”, which represents either a limited detection range or a limited attack range of predators. The limited domain of danger provides a suitable framework for the analysis of individual movement rules under real-life conditions because it takes into account the predator's prey detection and capture abilities. For the first time, a single geometrical construct can be used to analyse the predation risk of both peripheral and central individuals in a group. Furthermore, our model provides a conceptual framework that can be equally applied to aggregation behaviour and refuge use and thus presents a conceptual advance on current theory that treats these antipredator behaviours separately. An analysis of individual movement rules using limited domains of danger showed that the time minimization strategy outcompetes the nearest neighbour strategy proposed by Hamilton's (J. Theor. Biol. 31 (1971) 295) selfish herd model, whereas a random strategy confers no benefit and can even be disadvantageous. The superior performance of the time minimization strategy highlights the importance of taking biological constraints, such as an animal's orientation relative to its neighbours, into account when searching for efficient movement rules underlying the aggregation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number refbase @ user @ Serial 552  
Permanent link to this record
 

 
Author Reluga, T.C.; Viscido, S. doi  openurl
  Title Simulated evolution of selfish herd behavior Type Journal Article
  Year 2005 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.  
  Volume 234 Issue 2 Pages 213-225  
  Keywords Selfish herd; Behavior; Evolution; Predation risk  
  Abstract Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number refbase @ user @ Serial 553  
Permanent link to this record
 

 
Author Sovrano, V.A.; Rainoldi, C.; Bisazza, A.; Vallortigara, G. url  openurl
  Title Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish Type Journal Article
  Year 1999 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 106 Issue 1-2 Pages 175-180  
  Keywords Predator fixation; Fish; Left-eye preference  
  Abstract It has recently been reported that predator inspection is more likely to occur when a companion (i.e. the mirror image of the test animal) is visible on the left rather than on the right side of mosquitofish Gambusia holbrooki. This very unexpected outcome could be consistent with the hypothesis of a preferential use of the right eye during sustained fixation of a predator as well as of a preferential use of the left eye during fixation of conspecifics. We measured the time spent in monocular viewing during inspection of their own mirror images in females of six species of fish, belonging to different families--G. holbrooki, Xenotoca eiseni, Phoxinus phoxinus, Pterophyllum scalare, Xenopoecilus sarasinorum, and Trichogaster trichopterus. Results revealed a consistent left-eye preference during sustained fixation in all of the five species. Males of G. holbrooki, which do not normally show any social behaviour, did not exhibit any eye preferences during mirror-image inspection. We found, however, that they could be induced to manifest a left-eye preference, likewise females, if tested soon after capture, when some affiliative tendencies can be observed. These findings add to current evidence in a variety of vertebrate species for preferential involvement of structures located in the right side of the brain in response to the viewing of conspecifics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number refbase @ user @ Serial 614  
Permanent link to this record
 

 
Author Krause Hoare; Hemelrijk; Rubenstein url  doi
openurl 
  Title Leadership in fish shoals Type Journal Article
  Year 2000 Publication Fish and Fisheries Abbreviated Journal Fish Fish  
  Volume 1 Issue Pages 82-89  
  Keywords directional locomotion; fish schools; front fish; nutritional state; schooling; shoal leadership; swimming direction  
  Abstract Leadership is not an inherent quality of animal groups that show directional locomotion. However, there are other factors that may be responsible for the occurrence of leadership in fish shoals, such as individual differences in nutritional state between group members. It appears that front fish have a strong influence on directional shoal movements and that individuals that occupy such positions are often characterised by larger body lengths and lower nutritional state. Potential interactions between the two factors and their importance for positioning within shoals need further attention. Initiation of directional movement in stationary shoals and position preferences in mobile shoals need to be addressed separately because they are potentially subject to different constraints. Individuals that initiate a swimming direction may not necessarily be capable of the sustained high swimming performance required to keep the front position or have the motivation to do so, for that matter. More empirical and theoretical work is necessary to look at the factors controlling positioning behaviour within shoals, as well as overall shoal shape and structure. Tracking of marked individuals whose positioning behaviour is monitored over extended time periods of hours or days would be useful. There is an indication that shoal positions are rotated by individuals according to their nutritional needs, with hungry fish occupying front positions only for as long as necessary to regain their nutritional balance. This suggests that shoal members effectively take turns at being leaders. There is a need for three-dimensional recordings of shoaling behaviour using high-speed video systems that allow a detailed analysis of information transfer in shoals of different size. The relationship between leadership and shoal size might provide an interesting field for future research. Most studies to date have been restricted to shoals of small and medium size and more information on larger shoals would be useful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 2067  
Permanent link to this record
 

 
Author Dugatkin, L.A.; Godin, G.J. doi  openurl
  Title Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy,Poecilia reticulata Type Journal Article
  Year 1992 Publication Environmental Biology of Fishes Abbreviated Journal  
  Volume 34 Issue 3 Pages 265-276  
  Keywords Antipredation – Social group – Feeding – Predation risk – Trade-off – Fish  
  Abstract Guppies,Poecilia reticulata, living in stream pools in Trinidad, West Indies, approached a potential fish predator (a cichlid fish model) in a tentative, saltatory manner, mainly as singletons or in pairs. Such behavior is referred to as predator inspection behavior. Inspectors approached the trunk and tail of the predator model more frequently, more closely and in larger groups than they approached the predator's head, which is presumably the most dangerous area around the predator. However, guppies were not observed in significantly larger shoals in the stream when the predator model was present. In a stream enclosure, guppies inspected the predator model more frequently when it was stationary compared to when it was moving, and made closer inspections to the posterior regions of the predator than to its head. Therefore, the guppies apparently regarded the predator model as a potential threat and modified their behavior accordingly when inspecting it. Guppies exhibited a lower feeding rate in the presence of the predator, suggesting a trade-off between foraging gains and safety against predation. Our results further suggest that predator inspection behavior may account for some of this reduction in foraging. These findings are discussed in the context of the benefits and costs of predator inspection behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Equine Behaviour @ team @ Serial 2176  
Permanent link to this record
 

 
Author Sovrano, V.; Bisazza, A. url  doi
openurl 
  Title Recognition of partly occluded objects by fish Type Journal Article
  Year 2008 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 11 Issue 1 Pages 1435-9448  
  Keywords Visual completion – Amodal completion – Occlusion – Visual recognition – Fish  
  Abstract Abstract  The ability to visually complete partly occluded objects (so-called `“amodal completion”) has been documented in mammals and birds. Here, we report the first evidence of such a perceptual ability in a fish species. Fish (Xenotoca eiseni) were trained to discriminate between a complete and an amputated disk. Thereafter, the fish performed test trials in which hexagonal polygons were either exactly juxtaposed or only placed close to the missing sectors of the disk in order to produce or not produce the impression (to a human observer) of an occlusion of the missing sectors of the disk by the polygon. In another experiment, fish were first trained to discriminate between hexagonal polygons that were either exactly juxtaposed or only placed close to the missing sectors of a disk, and then tested for choice between a complete and an amputated disk. In both experiments, fish behaved as if they were experiencing visual completion of the partly occluded stimuli. These findings suggest that the ability to visually complete partly occluded objects may be widespread among vertebrates, possibly inherited in mammals, birds and fish from early vertebrate ancestors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Admin @ knut @ Serial 4217  
Permanent link to this record
 

 
Author Connor, R.C.; Wells, R.S.; Mann, J.; Read,A.J. isbn  openurl
  Title The bottlenose dolphin: Social relationships in a fission-fusion society. Type Book Chapter
  Year 2000 Publication Cetacean Societies: Field Studies of Dolphins and Whales. Abbreviated Journal  
  Volume Issue Pages 91-126  
  Keywords cetacean social behavior, male alliance formation, most cetacean species, platanistid river dolphins, cetacean sociality, strategies and social bonds, female cetaceans, many cetologists, most mysticetes, sperm whale calves, passive fishing nets, variant whistles, historical whaling records, cetacean systematics, stable matrilineal groups, peak calving season, suction cup tags, mutualistic groups, cetacean vocalizations, focal animal studies, larger odontocetes, predictive signaling, individual cetaceans, sperm whale clicks, resident killer whales  
  Abstract Book Description

“Part review, part testament to extraordinary dedication, and part call to get involved, Cetacean Societies highlights the achievements of behavioral ecologists inspired by the challenges of cetaceans and committed to the exploration of a new world.”-from the preface by Richard Wrangham

Long-lived, slow to reproduce, and often hidden beneath the water's surface, whales and dolphins (cetaceans) have remained elusive subjects for scientific study even though they have fascinated humans for centuries. Until recently, much of what we knew about cetaceans came from commercial sources such as whalers and trainers for dolphin acts. Innovative research methods and persistent efforts, however, have begun to penetrate the depths to reveal tantalizing glimpses of the lives of these mammals in their natural habitats.

Cetacean Societies presents the first comprehensive synthesis and review of these new studies. Groups of chapters focus on the history of cetacean behavioral research and methodology; state-of-the-art reviews of information on four of the most-studied species: bottlenose dolphins, killer whales, sperm whales, and humpback whales; and summaries of major topics, including group living, male and female reproductive strategies, communication, and conservation drawn from comparative research on a wide range of species.

Written by some of the world's leading cetacean scientists, this landmark volume will benefit not just students of cetology but also researchers in other areas of behavioral and conservation ecology as well as anyone with a serious interest in the world of whales and dolphins.

Contributors are Robin Baird, Phillip Clapham, Jenny Christal, Richard Connor, Janet Mann, Andrew Read, Randall Reeves, Amy Samuels, Peter Tyack, Linda Weilgart, Hal Whitehead, Randall S. Wells, and Richard Wrangham.
 
  Address  
  Corporate Author Thesis  
  Publisher University of Chicago Press Place of Publication Chicago Editor Mann, J.;Connor, R.C.; Tyack, P.L.;Whitehead, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0226503417 Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Equine Behaviour @ team @ Serial 4427  
Permanent link to this record
 

 
Author Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; Richard, S.; Veissier, I. url  doi
openurl 
  Title Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare Type Journal Article
  Year 2007 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.  
  Volume 92 Issue 3 Pages 317-339  
  Keywords Stress; Animal welfare; HPA axis; Glucocorticoid hormones; Acth; Dexamethasone suppression test; Cattle; Pig; Fur animals; Mink; Fox; Poultry; Fish  
  Abstract Measuring HPA axis activity is the standard approach to the study of stress and welfare in farm animals. Although the reference technique is the use of blood plasma to measure glucocorticoid hormones (cortisol or corticosterone), several alternative methods such as the measurement of corticosteroids in saliva, urine or faeces have been developed to overcome the stress induced by blood sampling itself. In chronic stress situations, as is frequently the case in studies about farm animal welfare, hormonal secretions are usually unchanged but dynamic testing allows the demonstration of functional changes at several levels of the system, including the sensitization of the adrenal cortex to ACTH and the resistance of the axis to feedback inhibition by corticosteroids (dexamethasone suppression test). Beyond these procedural aspects, the main pitfall in the use of HPA axis activity is in the interpretation of experimental data. The large variability of the system has to be taken into consideration, since corticosteroid hormone secretion is usually pulsatile, follows diurnal and seasonal rhythms, is influenced by feed intake and environmental factors such as temperature and humidity, age and physiological state, just to cite the main sources of variation. The corresponding changes reflect the important role of glucocorticoid hormones in a number of basic physiological processes such as energy metabolism and central nervous system functioning. Furthermore, large differences have been found across species, breeds and individuals, which reflect the contribution of genetic factors and environmental influences, especially during development, in HPA axis functioning. Usually, these results will be integrated with data from behavioral observation, production and pathology records in a comprehensive approach of farm animal welfare.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Equine Behaviour @ team @ Serial 4454  
Permanent link to this record
 

 
Author Stennett, C.R.; Strauss, R.E. url  doi
openurl 
  Title Behavioural lateralization in zebrafish and four related species of minnows (Osteichthyes: Cyprinidae) Type Journal Article
  Year 2010 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 79 Issue 6 Pages 1339-1342  
  Keywords binary data; Cyprinidae; Danio rerio; fish; laterality; monocular test; motor bias; score test; zebrafish  
  Abstract Behavioural lateralization has been observed in many species of fishes during stimulus-specific tasks. However, one area that has been overlooked is the study of naïve side bias in motor behaviour of fishes in the absence of direct visual stimulus. To this end, we examined naïve side biases in motor behaviour in five species of minnows (Osteichthyes: Cyprinidae). Fifteen individuals of each species were subjected to a T-shaped test arena, with 40 randomized replicates per individual. We took advantage of rheotaxis by running a slow current of water through each arm of the test apparatus. Of the 75 individuals tested, 55 showed a rightward turning preference. The overall right-biased behaviour observed in these fishes in the absence of systematic stimulus strongly suggests that a stimulus-free control condition be included in the experimental design whenever plausible for studies of laterality in fishes and presumably in other organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Equine Behaviour @ team @ Serial 5358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print