|   | 
Details
   web
Records
Author Hodson, E.F.; Clayton, H.M.; Lanovaz, J.L.
Title Temporal analysis of walk movements in the Grand Prix dressage test at the 1996 Olympic Games Type Journal Article
Year 1999 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 62 Issue 2-3 Pages 89-97
Keywords Dressage; Horse; Kinematics; Locomotion; Gait
Abstract Video analysis was used to measure temporal characteristics of the collected walk, extended walk and half pirouette at walk of eleven competitors during the team dressage competition at the 1996 Summer Olympic Games in Atlanta, GA. Forelimb stance durations, hind limb stance durations, lateral step intervals and diagonal step intervals were symmetrical for the right and left sides in the collected and extended walk strides, but there were left-right asymmetries in the forelimb stance duration and in the lateral step interval in the half pirouette strides. For both collected and extended walk strides, hind limb stance duration was significantly longer than forelimb stance duration. The mean values for the group of eleven horses showed that the collected and extended walks had a regular rhythm. The half pirouette strides showed an irregularity in which there was a short interval between footfalls of the outside forelimb and inside hind limb, and along interval between footfalls of the inside hind limb and inside forelimb. This irregularity reflected an early placement of the inside hind limb. The stance times of both hind limbs were prolonged and this finding, in combination with the early placement of the inside hind limb, led to an increase in the period of tripedal support in each stride of the half pirouette. This was interpreted as a means of maintaining the horses' balance in the absence of forward movement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number refbase @ user @ Serial 3960
Permanent link to this record
 

 
Author Waldern, N.M.; Wiestner, T.; Ramseier, L.C.; Amport, C.; Weishaupt, M.A.
Title Effects of shoeing on limb movement and ground reaction forces in Icelandic horses at walk, tölt and trot Type Journal Article
Year 2013 Publication The Veterinary Journal Abbreviated Journal Vet. J.
Volume 198, Supplement 1 Issue Pages e103-e108
Keywords Icelandic horse; Gait analysis; Ground reaction force; Kinematics; Shoeing; Tölt
Abstract Abstract Tölt is a symmetric four-beat gait with a speed range extending into that of trot and canter. Specific shoeing methods, such as unnaturally high and long hooves, are used to enforce individual gait predisposition. The aim of this study was to assess the consequences of this shoeing style on loading and movement of the limbs at walk, tölt and trot, and at different velocities. Simultaneous kinetic and kinematic gait analysis was carried out at walk (1.4 m/s) and at two tölting and trotting speeds (3.3 m/s and 3.9 m/s) on an instrumented treadmill. Thirteen sound Icelandic horses were first measured with high, long front hooves (SH) and, 1 week later, after trimming the hooves according to standard shoeing principles (SN). Comparing SH with SN, front hooves had 21 ± 5 mm longer dorsal hoof walls, and the shoeing material per hoof was 273 ± 50 g heavier. In all three gaits, gait quality, as it is currently judged, was improved with SH due to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. Forelimb–hind limb balance remained unchanged, but limb impulses were higher. Apart from an increase of ⩽2.2% in the forelimbs at the faster speed of both tölt and trot, SH had little influence on vertical peak forces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Equine Behaviour @ team @ Serial 5912
Permanent link to this record
 

 
Author Uchiyama, H.; Ohtani, N.; Ohta, M.
Title Three-dimensional analysis of horse and human gaits in therapeutic riding Type Journal Article
Year 2011 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 135 Issue 4 Pages 271-276
Keywords Equine-facilitated interventions; Horse gait; Human gait; Three-dimensional analysis; Horse riding
Abstract Therapeutic horse riding or hippotherapy is used as an intervention for treating individuals with mental and physical disabilities. Equine-assisted interventions are based on the hypothesis that the movement of the horse's pelvis during horseback riding resembles human ambulation, and thus provides motor and sensory inputs similar to those received during human walking. However, this hypothesis has not been investigated quantitatively and qualitatively. This study aimed to verify the hypothesis by conducting a three-dimensional analysis of the horse's movements while walking and human ambulation. Using four sets of equipments, we analysed the acceleration patterns of walking in 50 healthy humans and 11 horses. In addition, we analysed the exercise intensity by comparing the heart rate, breathing rate, and blood pressure of 127 healthy individuals before and after walking and horse riding. The acceleration data series of the stride phase of horse walking were compared with those of human walking, and the frequencies (in Hz) were analysed by Fast Fourier transform. The acceleration curves of human walking overlapped with those of horse walking, with the frequency band of human walking corresponding with that of horse walking. Exercise intensity, as measured by the heart rate and breathing rate, was not significantly different between horse riding and human walking. The levels of diastolic blood pressure were slightly higher during horse riding than during walking, but were lower during both conditions compared with those in normal conditions (P < 0.01). The present study shows that, although not completely matched, the accelerations of the horse and human walking are comparable quantitatively and qualitatively. Horse riding at a walking gait could generate motor and sensory inputs similar to those produced by human walking, and thus could provide optimum benefits to persons with ambulatory difficulties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1591 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Equine Behaviour @ team @ Serial 5488
Permanent link to this record
 

 
Author Burla, J.-B.; Ostertag, A.; Schulze Westerath Niklaus, H.; Hillmann, E.
Title Validation of the MSR145W Data Logger for Gait Determination in Horses (Equus caballus) Type Conference Article
Year 2012 Publication Proceedings of the 2. International Equine Science Meeting Abbreviated Journal Proc. 2. Int. Equine. Sci. Mtg
Volume in press Issue Pages
Keywords horse, activity, acceleration, gait determination
Abstract Group housed horses at a stud farm/riding stable in Belgium were observed on 17 days between 21 February and 25 April 2008, totalling 54hr25min of detailed data. The original group consisted of 8 Irish Cob mares, 1 Warmblood mare, 1 Arabian gelding and 2 Arabian mares. The group had been established in December 2007. During the course of the study 5 horses were removed from the group and 2 foals were born. 3 highly pregnant mares were housed adjacent to the group for part of the period. Horses were regularly used for lessons. Available surface area differed with the group on pasture at the end. Continuous all occurrence sampling of 10 agonistic and 2 affiliative behaviours was carried out for all group members present. Overall the group showed a frequency of 44.75 agonistic interactions per hour and 11.25 affiliative per hour. Of those agonistic interactions 46.3% were threats while 47% were less active interactions (displacement, being avoided), leaving only 6.7% more aggressive interactions ( mainly biting, some kicking and chasing). The effect on acting agonistically was not significant for age (p=0.1591) and borderline significant for density (p=0.0627). The analysis of the frequency of affiliative interactions showed there is no significant effect of age (p=0.1865) or density (p=0.7923). Agonistic and affiliative interactions were not significantly correlated (p=0.72). Affiliative behaviour a horse received showed a borderline effect (p=0.0787) on agonistic behaviour, as did the interaction between received agonistic and affiliative interactions (p=0.0725). Received agonistic interactions had a borderline negative effect (p=0.0656) on affiliative behaviour. A dominance hierarchy was calculated based on agonistic interactions using Empirical Bayes’ estimates based on Poisson regression with random effects. Agonistic behaviour expressed to other horses was significantly effected by relative rank (p=0.0243). Overall horses tended to be 3.7 times more aggressive towards lower ranking horses compared to higher ranking horses. Affiliative behaviour shown to other horses was not significantly influenced by the rank of the social partner (p=0.7915). Some individuals did show a significant effect whereby they showed more affiliative behaviour towards lower ranking individuals. This study was a small project to look at a practical situation of riding horses being kept in group housing. The frequent changes in group composition and available surface made it possible to look at agonistic and affiliative interactions in such circumstances. This is useful as instability in group composition is often used as main reason not to keep horses in social groups. The results from this study showed a borderline effect of density on agonistic behaviour. In reality it was also influenced by practical details, like a narrow paddock with only 2 hay crates on the smallest surface. Rank in a dominance hierarchy, based on agonistic behaviour, had a significant effect on the agonistic behaviour expressed towards higher or lower ranking horses. No injuries or escalating fights were observed. This study shows it is possible to keep a group of riding horses in a social context without excessive aggression.
Address
Corporate Author Burla, J.-B. Thesis
Publisher Xenophon Publishing Place of Publication Wald Editor Krueger, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-9808134-26 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Equine Behaviour @ team @ Serial 5511
Permanent link to this record
 

 
Author Kristjansson, T.; Bjornsdottir, S.; Sigurdsson, A.; Andersson, L.S.; Lindgren, G.; Helyar, S.J.; Klonowski, A.M.; Arnason, T.
Title The effect of the ‘Gait keeper’ mutation in the DMRT3 gene on gaiting ability in Icelandic horses Type Journal Article
Year 2014 Publication Journal of Animal Breeding and Genetics Abbreviated Journal J. Anim. Breed. Genet.
Volume Issue Pages n/a-n/a
Keywords Gaiting ability; genotype effect; genotype probability
Abstract A nonsense mutation in DMRT3 (‘Gait keeper’ mutation) has a predominant effect on gaiting ability in horses, being permissive for the ability to perform lateral gaits and having a favourable effect on speed capacity in trot. The DMRT3 mutant allele (A) has been found in high frequency in gaited breeds and breeds bred for harness racing, while other horse breeds were homozygous for the wild-type allele (C). The aim of this study was to evaluate further the effect of the DMRT3 nonsense mutation on the gait quality and speed capacity in the multigaited Icelandic horse and demonstrate how the frequencies of the A- and C- alleles have changed in the Icelandic horse population in recent decades. It was confirmed that homozygosity for the DMRT3 nonsense mutation relates to the ability to pace. It further had a favourable effect on scores in breeding field tests for the lateral gait tölt, demonstrated by better beat quality, speed capacity and suppleness. Horses with the CA genotype had on the other hand significantly higher scores for walk, trot, canter and gallop, and they performed better beat and suspension in trot and gallop. These results indicate that the AA genotype reinforces the coordination of ipsilateral legs, with the subsequent negative effect on the synchronized movement of diagonal legs compared with the CA genotype. The frequency of the A-allele has increased in recent decades with a corresponding decrease in the frequency of the C-allele. The estimated frequency of the A-allele in the Icelandic horse population in 2012 was 0.94. Selective breeding for lateral gaits in the Icelandic horse population has apparently altered the frequency of DMRT3 genotypes with a predicted loss of the C-allele in relatively few years. The results have practical implications for breeding and training of Icelandic horses and other gaited horse breeds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-0388 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Equine Behaviour @ team @ Serial 5831
Permanent link to this record
 

 
Author Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R.
Title The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot Type Journal Article
Year 1999 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume 30 Issue Pages 218-221
Keywords Animals; Body Weight; Computer Simulation; Gait/*physiology; Horses/*physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/*physiology
Abstract Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
Address Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1314, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) PMID:10659255 Approved no
Call Number Equine Behaviour @ team @ Serial 3733
Permanent link to this record
 

 
Author Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F.
Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 4 Pages 410-415
Keywords Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing
Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.
Address Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes (up) PMID:11469776 Approved no
Call Number Equine Behaviour @ team @ Serial 3787
Permanent link to this record
 

 
Author Robert, C.; Valette, J.P.; Denoix, J.M.
Title The effects of treadmill inclination and speed on the activity of three trunk muscles in the trotting horse Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 5 Pages 466-472
Keywords Animals; Biomechanics; Electromyography/methods/veterinary; Exercise Test/veterinary; Gait/physiology; Horses/*physiology; Muscle, Skeletal/*physiology; Physical Conditioning, Animal; Rectus Abdominis/physiology; Time Factors
Abstract The purpose of this study was to evaluate the effects of speed and slope on the activity of trunk muscles. The electromyographic (EMG) activity of the splenius (Sp), longissimus dorsi (LD) and rectus abdominis (RA) muscles was recorded with surface electrodes during treadmill locomotion at trot for different combinations of speed (3.5 to 6 m/s) and slope (0 to 6%). Raw EMG signals were processed to determine activity duration, onset and end and integrated EMG (IEMG). For the 3 muscles investigated, onset and end of activity were obtained earlier in the stride cycle when speed increased. A longer duration of activity for the LD, a shorter duration for the RA and an unchanged duration for the Sp were also observed. The IEMG of the latter was poorly affected by speed, whereas it increased linearly with speed for the 2 other muscles. When treadmill inclination changed from 0 to 6%, EMG activity of the LD and RA began and ended later; a longer activity duration was noted. Temporal parameters for Sp did not change with slope. A significant and progressive increase in the IEMG of the 3 muscles was observed with increasing slope. This evaluation of the activity of trunk muscles provides objective data for the use of speed or slope in training programmes.
Address UMR INRA-DGER, Biomecanique et Pathalogie Locomotrice du Cheval, UP Anatomie, Ecole Nationale Veterinaire d'Alfort, Maisons-Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes (up) PMID:11558741 Approved no
Call Number Equine Behaviour @ team @ Serial 4052
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J.
Title Horses damp the spring in their step Type Journal Article
Year 2001 Publication Nature Abbreviated Journal Nature
Volume 414 Issue 6866 Pages 895-899
Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration
Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes (up) PMID:11780059 Approved no
Call Number Equine Behaviour @ team @ Serial 2300
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record