toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author George, I.; Cousillas, H.; Richard, J.-P.; Hausberger, M. url  doi
openurl 
  Title Song perception in the European starling: hemispheric specialisation and individual variations Type Journal Article
  Year 2002 Publication Comptes Rendus Biologies Abbreviated Journal Compt. Rend. Biol.  
  Volume 325 Issue 3 Pages 197-204  
  Keywords lateralisation; perception; birdsong; starling; electrophysiology; individual variations; latéralisation; perception; chant; étourneaux; électrophysiologie; variations individuelles  
  Abstract Hemispheric specialisation for speech in humans has been well documented. The lateralisation for song production observed in songbirds is reminiscent of this hemispheric dominance. In order to investigate whether song perception is also lateralised, we made multiunit recordings of the neuronal activity in the field L of starlings during the presentation of species-specific and artificial non-specific sounds. We observed a systematic stronger activation in one hemisphere than in the other one during the playback of species-specific sounds, with inter-subject variability in the predominant hemisphere for song perception. Such an asymmetry was not observed for artificial non-specific sounds. Thus, our results suggest that, at least at the individual level, the two hemispheres of the starlings' brain perceive and process conspecific signals differently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4636  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium (down)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Bouchard, J. url  openurl
  Title Is social learning correlated with innovation in birds? An inter-and an interspecific test Type Manuscript
  Year 2002 Publication Department of Biology McGill University Montréal, Québec Abbreviated Journal  
  Volume Issue Pages  
  Keywords Birds -- Behavior Birds -- Food Columba livia -- Behavior Columba livia -- Food Social learning  
  Abstract This thesis focuses on the relationship between innovation and social learning in the foraging context, across and within bird species, using two different sources of data: anecdotal reports from the literature, and experimental tests in the laboratory and the field. In chapter 1, I review the trends in innovation and social learning in the avian literature, and contrast them with trends in mammals, especially primates. In chapter 2, I use anecdotal reports of feeding innovation and social learning in the literature to assess taxonomic trends and to study the relationship between the two traits at the interspecific level. In chapter 3, I investigate the relationship between innovation and social learning at the intraspecific level in captive feral pigeons (Columba livia). Innovation is estimated from the ability to solve an innovative foraging problem, and social learning is measured as the number of trials required to learn a foraging task from a proficient demonstrator. (Abstract shortened by UMI.)  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Department of Biology McGili University Montréal, Québec Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4785  
Permanent link to this record
 

 
Author Reboreda, J.C.; Clayton, N.S.; Kacelnik, A. url  openurl
  Title Species and sex differences in hippocampus size in parasitic and non-parasitic cowbirds Type Journal Article
  Year 1996 Publication Neuroreport Abbreviated Journal Neuroreport  
  Volume 7 Issue 2 Pages 505-508  
  Keywords Animals; Birds/*physiology; Female; Hippocampus/*anatomy & histology; Male; Nesting Behavior/*physiology; Sex Characteristics; Species Specificity; Telencephalon/anatomy & histology  
  Abstract To test the hypothesis that selection for spatial abilities which require birds to locate and to return accurately to host nests has produced an enlarged hippocampus in brood parasites, three species of cowbird were compared. In shiny cowbirds, females search for host nests without the assistance of the male; in screaming cowbirds, males and females inspect hosts' nests together; in bay-winged cowbirds, neither sex searches because this species is not a brood parasite. As predicted, the two parasitic species had a relatively larger hippocampus than the non-parasitic species. There were no sex differences in relative hippocampus size in screaming or bay-winged cowbirds, but female shiny cowbirds had a larger hippocampus than the male.  
  Address Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-4965 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:8730816 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4798  
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J doi  openurl
  Title The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
  Year 2001 Publication Biological Reviews Abbreviated Journal  
  Volume 76 Issue 3 Pages 341-364  
  Keywords biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.  
  Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4797  
Permanent link to this record
 

 
Author Zentall, T.R. openurl 
  Title Action imitation in birds Type Journal Article
  Year 2004 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav  
  Volume 32 Issue 1 Pages 15-23  
  Keywords Adaptation, Psychological; Animals; *Birds; *Imitative Behavior; Imprinting (Psychology); *Learning; Motivation; Psychological Theory; *Social Environment; *Social Facilitation; Vocalization, Animal  
  Abstract Action imitation, once thought to be a behavior almost exclusively limited to humans and the great apes, surprisingly also has been found in a number of bird species. Because imitation has been viewed by some psychologists as a form of intelligent behavior, there has been interest in how it is distributed among animal species. Although the mechanisms responsible for action imitation are not clear, we are now at least beginning to understand the conditions under which it occurs. In this article, I try to identify and differentiate the various forms of socially influenced behavior (species-typical social reactions, social effects on motivation, social effects on perception, socially influenced learning, and action imitation) and explain why it is important to differentiate imitation from other forms of social influence. I also examine some of the variables that appear to be involved in the occurrence of imitation. Finally, I speculate about why a number of bird species, but few mammal species, appear to imitate.  
  Address Department of Psychology, University of Kentucky, Lexington, Kentucky 40506, USA. zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-4494 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:15161137 Approved no  
  Call Number refbase @ user @ Serial 230  
Permanent link to this record
 

 
Author Jones, J.E.; Antoniadis, E.; Shettleworth, S.J.; Kamil, A.C. openurl 
  Title A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula) Type Journal Article
  Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol  
  Volume 116 Issue 4 Pages 350-356  
  Keywords Animals; Behavior, Animal/physiology; Birds; Feeding Behavior/physiology; Learning/*physiology; *Mathematics; Random Allocation; Spatial Behavior/*physiology  
  Abstract Three avian species, a seed-caching corvid (Clark's nutcrackers; Nucifraga columbiana), a non-seed-caching corvid (jackdaws; Corvus monedula), and a non-seed-caching columbid (pigeons; Columba livia), were tested for ability to learn to find a goal halfway between 2 landmarks when distance between the landmarks varied during training. All 3 species learned, but jackdaws took much longer than either pigeons or nutcrackers. The nutcrackers searched more accurately than either pigeons or jackdaws. Both nutcrackers and pigeons showed good transfer to novel landmark arrays in which interlandmark distances were novel, but inconclusive results were obtained from jackdaws. Species differences in this spatial task appear quantitative rather than qualitative and are associated with differences in natural history rather than phylogeny.  
  Address School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:12539930 Approved no  
  Call Number refbase @ user @ Serial 369  
Permanent link to this record
 

 
Author Shettleworth, S.J.; Westwood, R.P. openurl 
  Title Divided attention, memory, and spatial discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile atricapilla) and dark-eyed juncos (Junco hyemalis) Type Journal Article
  Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 28 Issue 3 Pages 227-241  
  Keywords Animals; Attention/*physiology; Behavior, Animal/physiology; Birds; *Discrimination (Psychology); *Food Habits; Memory/*physiology; Space Perception/*physiology; Spatial Behavior/*physiology  
  Abstract Food-storing birds, black-capped chickadees (Poecile atricapilla), and nonstoring birds, dark-eyed juncos (Junco hyemalis), matched color or location on a touch screen. Both species showed a divided attention effect for color but not for location (Experiment 1). Chickadees performed better on location than on color with retention intervals up to 40 s, but juncos did not (Experiment 2). Increasing sample-distractor distance improved performance similarly in both species. Multidimensional scaling revealed that both use a Euclidean metric of spatial similarity (Experiment 3). When choosing between the location and color of a remembered item, food storers choose location more than do nonstorers. These results explain this effect by differences in memory for location relative to color, not division of attention or spatial discrimination ability.  
  Address Department of Psychology, University of Toronto, 100 Saint George Street, Toronto, Ontario M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:12136700 Approved no  
  Call Number refbase @ user @ Serial 370  
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J. openurl 
  Title Hippocampus and memory in a food-storing and in a nonstoring bird species Type Journal Article
  Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 110 Issue 5 Pages 946-964  
  Keywords Animals; Appetitive Behavior/*physiology; Attention/physiology; Birds/*physiology; Brain Mapping; Feeding Behavior/*physiology; Mental Recall/*physiology; Organ Size/physiology; Orientation/*physiology; Retention (Psychology)/physiology; Species Specificity  
  Abstract Food-storing birds maintain in memory a large and constantly changing catalog of the locations of stored food. The hippocampus of food-storing black-capped chickadees (Parus atricapillus) is proportionally larger than that of nonstoring dark-eyed juncos (Junco hyemalis). Chickadees perform better than do juncos in an operant test of spatial non-matching-to-sample (SNMTS), and chickadees are more resistant to interference in this paradigm. Hippocampal lesions attenuate performance in SNMTS and increase interference. In tests of continuous spatial alternation (CSA), juncos perform better than chickadees. CSA performance also declines following hippocampal lesions. By itself, sensitivity of a given task to hippocampal damage does not predict the direction of memory differences between storing and nonstoring species.  
  Address Department of Psychology, University of Toronto, Ontario, Canada. robert@ln.nimh.nih.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:8918998 Approved no  
  Call Number refbase @ user @ Serial 375  
Permanent link to this record
 

 
Author Hampton, R.R.; Shettleworth, S.J. openurl 
  Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
  Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 110 Issue 4 Pages 831-835  
  Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity  
  Abstract The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium (down)  
  Area Expedition Conference  
  Notes PMID:8864273 Approved no  
  Call Number refbase @ user @ Serial 376  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print