|   | 
Details
   web
Records
Author Hagen, S.J.; Eaton, W.A.
Title Two-state expansion and collapse of a polypeptide Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 301 Issue 4 Pages 1019-1027
Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics
Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.
Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10966803 Approved no
Call Number Equine Behaviour @ team @ Serial 3790
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K.
Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
Year 1982 Publication The Journal of Biological Chemistry Abbreviated Journal J Biol Chem
Volume 257 Issue 5 Pages 2267-2273
Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature
Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9258 ISBN Medium
Area Expedition Conference
Notes PMID:6277891 Approved no
Call Number Equine Behaviour @ team @ Serial 3807
Permanent link to this record
 

 
Author Saigo, S.
Title A transient spin-state change during alkaline isomerization of ferricytochrome c Type Journal Article
Year 1981 Publication Journal of Biochemistry Abbreviated Journal J Biochem (Tokyo)
Volume 89 Issue 6 Pages 1977-1980
Keywords Animals; *Cytochrome c Group; Horses; Hydrogen-Ion Concentration; Isomerism; Kinetics; Myocardium/enzymology; Oxidation-Reduction; Spectrophotometry
Abstract Kinetic difference spectra during the alkaline isomerization of ferricytochrome c were obtained by the pH-jump method in the range of 540 to 655 nm. The spectrum of the transient intermediate, which appears during the course of the isomerization, was reproduced from the spectra. The intermediate showed an intense absorption band at 600 nm, indicating that it is a high spin or mixed spin species. This is in contrast to the stable neutral and alkaline forms which are low spin species. The transient spin-state change during the isomerization was also observed upon rapid oxidation of ferrocytochrome c at alkaline pH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-924X ISBN Medium
Area Expedition Conference
Notes PMID:6270075 Approved no
Call Number Equine Behaviour @ team @ Serial 3808
Permanent link to this record
 

 
Author Ridge, J.A.; Baldwin, R.L.; Labhardt, A.M.
Title Nature of the fast and slow refolding reactions of iron(III) cytochrome c Type Journal Article
Year 1981 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 20 Issue 6 Pages 1622-1630
Keywords Animals; Ascorbic Acid; *Cytochrome c Group; Guanidines; Horses; Kinetics; Oxidation-Reduction; Protein Conformation; Spectrum Analysis
Abstract The fast and slow refolding reactions of iron(III) cytochrome c (Fe(III) cyt c), previously studied by Ikai et al. (Ikai, A., Fish, W. W., & Tanford, C. (1973) J. Mol. Biol. 73, 165--184), have been reinvestigated. The fast reaction has the major amplitude (78%) and is 100-fold faster than the slow reaction in these conditions (pH 7.2, 25 degrees C, 1.75 M guanidine hydrochloride). We show here that native cyt c is the product formed in the fast reaction as well as in the slow reaction. Two probes have been used to test for formation of native cyt c. absorbance in the 695-nm band and rate of reduction of by L-ascorbate. Different unfolded species (UF, US) give rise to the fast and slow refolding reactions, as shown both by refolding assays at different times after unfolding (“double-jump” experiments) and by the formation of native cyt c in each of the fast and slow refolding reactions. Thus the fast refolding reaction is UF leads to N and the slow refolding reaction is Us leads to N, where N is native cyt c, and there is a US in equilibrium UF equilibrium in unfolded cyt c. The results are consistent with the UF in equilibrium US reaction being proline isomerization, but this has not yet been tested in detail. Folding intermediates have been detected in both reactions. In the UF leads to N reaction, the Soret absorbance change precedes the recovery of the native 695-nm band spectrum, showing that Soret absorbance monitors the formation of a folding intermediate. In the US leads to N reaction an ascorbate-reducible intermediate has been found at an early stage in folding and the Soret absorbance change occurs together with the change at 695 nm as N is formed in the final stage of folding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:6261802 Approved no
Call Number Equine Behaviour @ team @ Serial 3809
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M.
Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem
Volume 77 Issue 1 Pages 193-199
Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature
Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2956 ISBN Medium
Area Expedition Conference
Notes PMID:20304 Approved no
Call Number Equine Behaviour @ team @ Serial 3814
Permanent link to this record
 

 
Author Kihara, H.; Nakatani, H.; Hiromi, K.; Hon-Nami, K.
Title Kinetic studies on redox reactions of hemoproteins. I. Reduction of thermoresistant cytochrome c-552 and horse heart cytochrome c by ferrocyanide Type Journal Article
Year 1977 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta
Volume 460 Issue 3 Pages 480-489
Keywords Animals; Bacteria; *Cytochrome c Group; *Ferrocyanides; Horses; Kinetics; Mathematics; Oxidation-Reduction; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; Thermodynamics
Abstract The oxidation-reduction reaction of horse heart cytochrome c and cytochrome c (552, Thermus thermophilus), which is highly thermoresistant, was studied by temperature-jump method. Ferrohexacyanide was used as reductant. (Formula: see text.) Thermodynamic and activation parameters of the reaction obtained for both cytochromes were compared with each other. The results of this showed that (1) the redox potential of cytochrome c-552, + 0.19 V, is markedly less than that of horse heart cytochrome c. (2) deltaHox of cytochrome c-552 is considerably lower than that of horse heart cytochrome c. (3) deltaSox and deltaSred of cytochrome c-552 are more negative than those of horse heart cytochrome c. (4) kred of cytochrome c-552 is much lower than that of horse heart cytochrome c at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3002 ISBN Medium
Area Expedition Conference
Notes PMID:195599 Approved no
Call Number Equine Behaviour @ team @ Serial 3815
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T.
Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 298 Issue 5 Pages 955-969
Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics
Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10801361 Approved no
Call Number refbase @ user @ Serial 3853
Permanent link to this record
 

 
Author Saigo, S.
Title Kinetic and equilibrium studies of alkaline isomerization of vertebrate cytochromes c Type Journal Article
Year 1981 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta
Volume 669 Issue 1 Pages 13-20
Keywords Amino Acid Sequence; Animals; Cytochrome c Group/*metabolism; Dogs; Hydrogen-Ion Concentration; Isomerism; Kinetics; Vertebrates/metabolism
Abstract Equilibria and kinetics of alkaline isomerization of seven ferricytochromes c from vertebrates were studied by pH-titration and pH-jump methods in the pH region of 7-12. In the equilibrium behavior, no significant difference was detected among the cytochromes c, whereas marked differences in the kinetic behavior were observed. According to the kinetic behavior of the isomerization, the cytochromes c examined fall into three classes: Group I (horse, sheep, dog and pigeon cytochromes c), Group II (tuna and bonito cytochromes c) and Group III (rhesus monkey cytochrome c). The kinetic results are interpreted in terms of the sequential scheme: Neutral form in equilibrium with fast Transient form in equilibrium with slow Alkaline form where the neutral and alkaline forms are the species stable at neutral and alkaline pH, respectively, and the transient form is a kinetic intermediate. From comparison of the primary sequences of the seven cytochromes c and the classification of these cytochromes c, it is concluded that the amino acid substitution Phe/Tyr at the 46-th position has a major influence on the kinetic behavior. In Group II and III cytochromes c, the ionization of Tyr-46 is suggested to bring about loosening of the heme crevice and thus facilitate the ligand replacement involved in the isomerization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3002 ISBN Medium
Area Expedition Conference
Notes PMID:6271238 Approved no
Call Number refbase @ user @ Serial 3871
Permanent link to this record
 

 
Author Hasumi, H.
Title Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method Type Journal Article
Year 1980 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta
Volume 626 Issue 2 Pages 265-276
Keywords Circular Dichroism; *Cytochrome c Group; Hydrogen-Ion Concentration; Isomerism; Kinetics; Spectrophotometry
Abstract The isomerization of horse-heart ferricytochrome c caused by varying pH was kinetically studied by using circular dichroism (CD) and optical absorption stopped-flow techniques. In the pH range of 7--13, the existence of the three different forms of ferricytochrome c (pH less than 10, pH 10--12, and pH greater than 12) was indicated from the statistical difference CD spectra. On the basis of analyses of the stopped-flow traces in the near-ultraviolet and Soret wavelength regions, the isomerization of ferricytochrome c from neutral form to the above three alkaline forms was interpreted as follows (1) below pH 10, the replacement of the intrinsic ligand of methionine residue by lysine residue occurs; (2) between pH 10 and 12, the uncoupling of the polypeptide chain from close proximity of the heme group occurs first, followed by the interconversion of the intrinsic ligands; and (3) above pH 12, hydroxide form of ferricytochrome c is formed, though the replacement of the intrinsic ligand by extrinsic ligands may occur via different routes from those below pH 12. The CD changes at 288 nm and in the Soret region caused by the pH-jump (down) from pH 6.0 to 1.6 were compared with the appearance of the 620-nm absorption band ascribed to the formation of the high-spin form of ferricytochrome c. Both CD and absorption changes indicated that the isomerization at pH 1.6 consisted of two processes: one proceeded within the dead-time (about 2 ms) of the stopped-flow apparatus and the other proceeded at a determinable rate with the apparatus. On the basis of these results, the isomerization of ferricytochrome c at pH 1.6 was explained as follows: (1) the transition from the low-spin form to the high-spin forms occurs within about 2 ms, the dead-time of the stopped-flow apparatus; and (2) the polypeptide chain is unfolded after the formation of the high-spin form.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3002 ISBN Medium
Area Expedition Conference
Notes PMID:6260152 Approved no
Call Number refbase @ user @ Serial 3876
Permanent link to this record
 

 
Author Wilson, M.T.; Silvestrini, M.C.; Morpurgo, L.; Brunori, M.
Title Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551) Type Journal Article
Year 1979 Publication Journal of Inorganic Biochemistry Abbreviated Journal J Inorg Biochem
Volume 11 Issue 2 Pages 95-100
Keywords Animals; Copper; Cytochrome c Group/*metabolism; Electron Transport; Kinetics; Metalloproteins/*metabolism; Plant Proteins/*metabolism; *Plants, Toxic; Pseudomonas aeruginosa/*metabolism; Toxicodendron/*metabolism
Abstract The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-0134 ISBN Medium
Area Expedition Conference
Notes PMID:228006 Approved no
Call Number refbase @ user @ Serial 3879
Permanent link to this record